Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > apirr | GIF version |
Description: Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.) |
Ref | Expression |
---|---|
apirr | ⊢ (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 7895 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
2 | reapirr 8475 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 #ℝ 𝑥) | |
3 | apreap 8485 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝑥 ↔ 𝑥 #ℝ 𝑥)) | |
4 | 3 | anidms 395 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → (𝑥 # 𝑥 ↔ 𝑥 #ℝ 𝑥)) |
5 | 2, 4 | mtbird 663 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 # 𝑥) |
6 | reapirr 8475 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 #ℝ 𝑦) | |
7 | apreap 8485 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 # 𝑦 ↔ 𝑦 #ℝ 𝑦)) | |
8 | 7 | anidms 395 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → (𝑦 # 𝑦 ↔ 𝑦 #ℝ 𝑦)) |
9 | 6, 8 | mtbird 663 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 # 𝑦) |
10 | 5, 9 | anim12i 336 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (¬ 𝑥 # 𝑥 ∧ ¬ 𝑦 # 𝑦)) |
11 | ioran 742 | . . . . . . . 8 ⊢ (¬ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦) ↔ (¬ 𝑥 # 𝑥 ∧ ¬ 𝑦 # 𝑦)) | |
12 | 10, 11 | sylibr 133 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ¬ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦)) |
13 | apreim 8501 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)) ↔ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦))) | |
14 | 13 | anidms 395 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)) ↔ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦))) |
15 | 12, 14 | mtbird 663 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦))) |
16 | 15 | ad2antlr 481 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦))) |
17 | id 19 | . . . . . . . 8 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦))) | |
18 | 17, 17 | breq12d 3995 | . . . . . . 7 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐴 ↔ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))) |
19 | 18 | notbid 657 | . . . . . 6 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (¬ 𝐴 # 𝐴 ↔ ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))) |
20 | 19 | adantl 275 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (¬ 𝐴 # 𝐴 ↔ ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))) |
21 | 16, 20 | mpbird 166 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ¬ 𝐴 # 𝐴) |
22 | 21 | ex 114 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → ¬ 𝐴 # 𝐴)) |
23 | 22 | rexlimdvva 2591 | . 2 ⊢ (𝐴 ∈ ℂ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → ¬ 𝐴 # 𝐴)) |
24 | 1, 23 | mpd 13 | 1 ⊢ (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 class class class wbr 3982 (class class class)co 5842 ℂcc 7751 ℝcr 7752 ici 7755 + caddc 7756 · cmul 7758 #ℝ creap 8472 # cap 8479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 |
This theorem is referenced by: mulap0r 8513 eirr 11719 dcapnconst 13949 |
Copyright terms: Public domain | W3C validator |