![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > apirr | GIF version |
Description: Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.) |
Ref | Expression |
---|---|
apirr | ⊢ (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 8017 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
2 | reapirr 8598 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 #ℝ 𝑥) | |
3 | apreap 8608 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝑥 ↔ 𝑥 #ℝ 𝑥)) | |
4 | 3 | anidms 397 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → (𝑥 # 𝑥 ↔ 𝑥 #ℝ 𝑥)) |
5 | 2, 4 | mtbird 674 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 # 𝑥) |
6 | reapirr 8598 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 #ℝ 𝑦) | |
7 | apreap 8608 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 # 𝑦 ↔ 𝑦 #ℝ 𝑦)) | |
8 | 7 | anidms 397 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → (𝑦 # 𝑦 ↔ 𝑦 #ℝ 𝑦)) |
9 | 6, 8 | mtbird 674 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 # 𝑦) |
10 | 5, 9 | anim12i 338 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (¬ 𝑥 # 𝑥 ∧ ¬ 𝑦 # 𝑦)) |
11 | ioran 753 | . . . . . . . 8 ⊢ (¬ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦) ↔ (¬ 𝑥 # 𝑥 ∧ ¬ 𝑦 # 𝑦)) | |
12 | 10, 11 | sylibr 134 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ¬ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦)) |
13 | apreim 8624 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)) ↔ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦))) | |
14 | 13 | anidms 397 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)) ↔ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦))) |
15 | 12, 14 | mtbird 674 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦))) |
16 | 15 | ad2antlr 489 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦))) |
17 | id 19 | . . . . . . . 8 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦))) | |
18 | 17, 17 | breq12d 4043 | . . . . . . 7 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐴 ↔ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))) |
19 | 18 | notbid 668 | . . . . . 6 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (¬ 𝐴 # 𝐴 ↔ ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))) |
20 | 19 | adantl 277 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (¬ 𝐴 # 𝐴 ↔ ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))) |
21 | 16, 20 | mpbird 167 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ¬ 𝐴 # 𝐴) |
22 | 21 | ex 115 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → ¬ 𝐴 # 𝐴)) |
23 | 22 | rexlimdvva 2619 | . 2 ⊢ (𝐴 ∈ ℂ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → ¬ 𝐴 # 𝐴)) |
24 | 1, 23 | mpd 13 | 1 ⊢ (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 ℝcr 7873 ici 7876 + caddc 7877 · cmul 7879 #ℝ creap 8595 # cap 8602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 |
This theorem is referenced by: mulap0r 8636 aptap 8671 eirr 11925 dcapnconst 15621 |
Copyright terms: Public domain | W3C validator |