![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > apirr | GIF version |
Description: Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.) |
Ref | Expression |
---|---|
apirr | ⊢ (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 7538 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
2 | reapirr 8108 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 #ℝ 𝑥) | |
3 | apreap 8118 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝑥 ↔ 𝑥 #ℝ 𝑥)) | |
4 | 3 | anidms 390 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → (𝑥 # 𝑥 ↔ 𝑥 #ℝ 𝑥)) |
5 | 2, 4 | mtbird 634 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 # 𝑥) |
6 | reapirr 8108 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 #ℝ 𝑦) | |
7 | apreap 8118 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 # 𝑦 ↔ 𝑦 #ℝ 𝑦)) | |
8 | 7 | anidms 390 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → (𝑦 # 𝑦 ↔ 𝑦 #ℝ 𝑦)) |
9 | 6, 8 | mtbird 634 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 # 𝑦) |
10 | 5, 9 | anim12i 332 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (¬ 𝑥 # 𝑥 ∧ ¬ 𝑦 # 𝑦)) |
11 | ioran 705 | . . . . . . . 8 ⊢ (¬ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦) ↔ (¬ 𝑥 # 𝑥 ∧ ¬ 𝑦 # 𝑦)) | |
12 | 10, 11 | sylibr 133 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ¬ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦)) |
13 | apreim 8134 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)) ↔ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦))) | |
14 | 13 | anidms 390 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)) ↔ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦))) |
15 | 12, 14 | mtbird 634 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦))) |
16 | 15 | ad2antlr 474 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦))) |
17 | id 19 | . . . . . . . 8 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦))) | |
18 | 17, 17 | breq12d 3864 | . . . . . . 7 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐴 ↔ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))) |
19 | 18 | notbid 628 | . . . . . 6 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (¬ 𝐴 # 𝐴 ↔ ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))) |
20 | 19 | adantl 272 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (¬ 𝐴 # 𝐴 ↔ ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))) |
21 | 16, 20 | mpbird 166 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ¬ 𝐴 # 𝐴) |
22 | 21 | ex 114 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → ¬ 𝐴 # 𝐴)) |
23 | 22 | rexlimdvva 2497 | . 2 ⊢ (𝐴 ∈ ℂ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → ¬ 𝐴 # 𝐴)) |
24 | 1, 23 | mpd 13 | 1 ⊢ (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 665 = wceq 1290 ∈ wcel 1439 ∃wrex 2361 class class class wbr 3851 (class class class)co 5666 ℂcc 7402 ℝcr 7403 ici 7406 + caddc 7407 · cmul 7409 #ℝ creap 8105 # cap 8112 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7490 ax-resscn 7491 ax-1cn 7492 ax-1re 7493 ax-icn 7494 ax-addcl 7495 ax-addrcl 7496 ax-mulcl 7497 ax-mulrcl 7498 ax-addcom 7499 ax-mulcom 7500 ax-addass 7501 ax-mulass 7502 ax-distr 7503 ax-i2m1 7504 ax-0lt1 7505 ax-1rid 7506 ax-0id 7507 ax-rnegex 7508 ax-precex 7509 ax-cnre 7510 ax-pre-ltirr 7511 ax-pre-lttrn 7513 ax-pre-apti 7514 ax-pre-ltadd 7515 ax-pre-mulgt0 7516 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2622 df-sbc 2842 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-id 4129 df-xp 4457 df-rel 4458 df-cnv 4459 df-co 4460 df-dm 4461 df-iota 4993 df-fun 5030 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-pnf 7578 df-mnf 7579 df-ltxr 7581 df-sub 7709 df-neg 7710 df-reap 8106 df-ap 8113 |
This theorem is referenced by: mulap0r 8146 eirr 11120 |
Copyright terms: Public domain | W3C validator |