ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apirr GIF version

Theorem apirr 8524
Description: Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.)
Assertion
Ref Expression
apirr (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴)

Proof of Theorem apirr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7916 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 reapirr 8496 . . . . . . . . . 10 (𝑥 ∈ ℝ → ¬ 𝑥 # 𝑥)
3 apreap 8506 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝑥𝑥 # 𝑥))
43anidms 395 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 # 𝑥𝑥 # 𝑥))
52, 4mtbird 668 . . . . . . . . 9 (𝑥 ∈ ℝ → ¬ 𝑥 # 𝑥)
6 reapirr 8496 . . . . . . . . . 10 (𝑦 ∈ ℝ → ¬ 𝑦 # 𝑦)
7 apreap 8506 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 # 𝑦𝑦 # 𝑦))
87anidms 395 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑦 # 𝑦𝑦 # 𝑦))
96, 8mtbird 668 . . . . . . . . 9 (𝑦 ∈ ℝ → ¬ 𝑦 # 𝑦)
105, 9anim12i 336 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (¬ 𝑥 # 𝑥 ∧ ¬ 𝑦 # 𝑦))
11 ioran 747 . . . . . . . 8 (¬ (𝑥 # 𝑥𝑦 # 𝑦) ↔ (¬ 𝑥 # 𝑥 ∧ ¬ 𝑦 # 𝑦))
1210, 11sylibr 133 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ¬ (𝑥 # 𝑥𝑦 # 𝑦))
13 apreim 8522 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)) ↔ (𝑥 # 𝑥𝑦 # 𝑦)))
1413anidms 395 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)) ↔ (𝑥 # 𝑥𝑦 # 𝑦)))
1512, 14mtbird 668 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))
1615ad2antlr 486 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))
17 id 19 . . . . . . . 8 (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦)))
1817, 17breq12d 4002 . . . . . . 7 (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐴 ↔ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦))))
1918notbid 662 . . . . . 6 (𝐴 = (𝑥 + (i · 𝑦)) → (¬ 𝐴 # 𝐴 ↔ ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦))))
2019adantl 275 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (¬ 𝐴 # 𝐴 ↔ ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦))))
2116, 20mpbird 166 . . . 4 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ¬ 𝐴 # 𝐴)
2221ex 114 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → ¬ 𝐴 # 𝐴))
2322rexlimdvva 2595 . 2 (𝐴 ∈ ℂ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → ¬ 𝐴 # 𝐴))
241, 23mpd 13 1 (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  wrex 2449   class class class wbr 3989  (class class class)co 5853  cc 7772  cr 7773  ici 7776   + caddc 7777   · cmul 7779   # creap 8493   # cap 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-ltxr 7959  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501
This theorem is referenced by:  mulap0r  8534  eirr  11741  dcapnconst  14092
  Copyright terms: Public domain W3C validator