| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > apirr | GIF version | ||
| Description: Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.) |
| Ref | Expression |
|---|---|
| apirr | ⊢ (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8110 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
| 2 | reapirr 8692 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 #ℝ 𝑥) | |
| 3 | apreap 8702 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝑥 ↔ 𝑥 #ℝ 𝑥)) | |
| 4 | 3 | anidms 397 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → (𝑥 # 𝑥 ↔ 𝑥 #ℝ 𝑥)) |
| 5 | 2, 4 | mtbird 677 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 # 𝑥) |
| 6 | reapirr 8692 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 #ℝ 𝑦) | |
| 7 | apreap 8702 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 # 𝑦 ↔ 𝑦 #ℝ 𝑦)) | |
| 8 | 7 | anidms 397 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → (𝑦 # 𝑦 ↔ 𝑦 #ℝ 𝑦)) |
| 9 | 6, 8 | mtbird 677 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 # 𝑦) |
| 10 | 5, 9 | anim12i 338 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (¬ 𝑥 # 𝑥 ∧ ¬ 𝑦 # 𝑦)) |
| 11 | ioran 756 | . . . . . . . 8 ⊢ (¬ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦) ↔ (¬ 𝑥 # 𝑥 ∧ ¬ 𝑦 # 𝑦)) | |
| 12 | 10, 11 | sylibr 134 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ¬ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦)) |
| 13 | apreim 8718 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)) ↔ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦))) | |
| 14 | 13 | anidms 397 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)) ↔ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦))) |
| 15 | 12, 14 | mtbird 677 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦))) |
| 16 | 15 | ad2antlr 489 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦))) |
| 17 | id 19 | . . . . . . . 8 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦))) | |
| 18 | 17, 17 | breq12d 4075 | . . . . . . 7 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐴 ↔ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))) |
| 19 | 18 | notbid 671 | . . . . . 6 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (¬ 𝐴 # 𝐴 ↔ ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))) |
| 20 | 19 | adantl 277 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (¬ 𝐴 # 𝐴 ↔ ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))) |
| 21 | 16, 20 | mpbird 167 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ¬ 𝐴 # 𝐴) |
| 22 | 21 | ex 115 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → ¬ 𝐴 # 𝐴)) |
| 23 | 22 | rexlimdvva 2636 | . 2 ⊢ (𝐴 ∈ ℂ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → ¬ 𝐴 # 𝐴)) |
| 24 | 1, 23 | mpd 13 | 1 ⊢ (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 712 = wceq 1375 ∈ wcel 2180 ∃wrex 2489 class class class wbr 4062 (class class class)co 5974 ℂcc 7965 ℝcr 7966 ici 7969 + caddc 7970 · cmul 7972 #ℝ creap 8689 # cap 8696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 |
| This theorem is referenced by: mulap0r 8730 aptap 8765 eirr 12256 dcapnconst 16340 |
| Copyright terms: Public domain | W3C validator |