ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apirr GIF version

Theorem apirr 8649
Description: Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.)
Assertion
Ref Expression
apirr (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴)

Proof of Theorem apirr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 8039 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 reapirr 8621 . . . . . . . . . 10 (𝑥 ∈ ℝ → ¬ 𝑥 # 𝑥)
3 apreap 8631 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝑥𝑥 # 𝑥))
43anidms 397 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 # 𝑥𝑥 # 𝑥))
52, 4mtbird 674 . . . . . . . . 9 (𝑥 ∈ ℝ → ¬ 𝑥 # 𝑥)
6 reapirr 8621 . . . . . . . . . 10 (𝑦 ∈ ℝ → ¬ 𝑦 # 𝑦)
7 apreap 8631 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 # 𝑦𝑦 # 𝑦))
87anidms 397 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑦 # 𝑦𝑦 # 𝑦))
96, 8mtbird 674 . . . . . . . . 9 (𝑦 ∈ ℝ → ¬ 𝑦 # 𝑦)
105, 9anim12i 338 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (¬ 𝑥 # 𝑥 ∧ ¬ 𝑦 # 𝑦))
11 ioran 753 . . . . . . . 8 (¬ (𝑥 # 𝑥𝑦 # 𝑦) ↔ (¬ 𝑥 # 𝑥 ∧ ¬ 𝑦 # 𝑦))
1210, 11sylibr 134 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ¬ (𝑥 # 𝑥𝑦 # 𝑦))
13 apreim 8647 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)) ↔ (𝑥 # 𝑥𝑦 # 𝑦)))
1413anidms 397 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)) ↔ (𝑥 # 𝑥𝑦 # 𝑦)))
1512, 14mtbird 674 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))
1615ad2antlr 489 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))
17 id 19 . . . . . . . 8 (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦)))
1817, 17breq12d 4047 . . . . . . 7 (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐴 ↔ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦))))
1918notbid 668 . . . . . 6 (𝐴 = (𝑥 + (i · 𝑦)) → (¬ 𝐴 # 𝐴 ↔ ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦))))
2019adantl 277 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (¬ 𝐴 # 𝐴 ↔ ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦))))
2116, 20mpbird 167 . . . 4 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ¬ 𝐴 # 𝐴)
2221ex 115 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → ¬ 𝐴 # 𝐴))
2322rexlimdvva 2622 . 2 (𝐴 ∈ ℂ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → ¬ 𝐴 # 𝐴))
241, 23mpd 13 1 (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wrex 2476   class class class wbr 4034  (class class class)co 5925  cc 7894  cr 7895  ici 7898   + caddc 7899   · cmul 7901   # creap 8618   # cap 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626
This theorem is referenced by:  mulap0r  8659  aptap  8694  eirr  11961  dcapnconst  15792
  Copyright terms: Public domain W3C validator