| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > apirr | GIF version | ||
| Description: Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.) |
| Ref | Expression |
|---|---|
| apirr | ⊢ (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 8075 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
| 2 | reapirr 8657 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 #ℝ 𝑥) | |
| 3 | apreap 8667 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝑥 ↔ 𝑥 #ℝ 𝑥)) | |
| 4 | 3 | anidms 397 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ → (𝑥 # 𝑥 ↔ 𝑥 #ℝ 𝑥)) |
| 5 | 2, 4 | mtbird 675 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 # 𝑥) |
| 6 | reapirr 8657 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 #ℝ 𝑦) | |
| 7 | apreap 8667 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 # 𝑦 ↔ 𝑦 #ℝ 𝑦)) | |
| 8 | 7 | anidms 397 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → (𝑦 # 𝑦 ↔ 𝑦 #ℝ 𝑦)) |
| 9 | 6, 8 | mtbird 675 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 # 𝑦) |
| 10 | 5, 9 | anim12i 338 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (¬ 𝑥 # 𝑥 ∧ ¬ 𝑦 # 𝑦)) |
| 11 | ioran 754 | . . . . . . . 8 ⊢ (¬ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦) ↔ (¬ 𝑥 # 𝑥 ∧ ¬ 𝑦 # 𝑦)) | |
| 12 | 10, 11 | sylibr 134 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ¬ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦)) |
| 13 | apreim 8683 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)) ↔ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦))) | |
| 14 | 13 | anidms 397 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)) ↔ (𝑥 # 𝑥 ∨ 𝑦 # 𝑦))) |
| 15 | 12, 14 | mtbird 675 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦))) |
| 16 | 15 | ad2antlr 489 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦))) |
| 17 | id 19 | . . . . . . . 8 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦))) | |
| 18 | 17, 17 | breq12d 4060 | . . . . . . 7 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 # 𝐴 ↔ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))) |
| 19 | 18 | notbid 669 | . . . . . 6 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (¬ 𝐴 # 𝐴 ↔ ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))) |
| 20 | 19 | adantl 277 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (¬ 𝐴 # 𝐴 ↔ ¬ (𝑥 + (i · 𝑦)) # (𝑥 + (i · 𝑦)))) |
| 21 | 16, 20 | mpbird 167 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ¬ 𝐴 # 𝐴) |
| 22 | 21 | ex 115 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 = (𝑥 + (i · 𝑦)) → ¬ 𝐴 # 𝐴)) |
| 23 | 22 | rexlimdvva 2632 | . 2 ⊢ (𝐴 ∈ ℂ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → ¬ 𝐴 # 𝐴)) |
| 24 | 1, 23 | mpd 13 | 1 ⊢ (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 class class class wbr 4047 (class class class)co 5951 ℂcc 7930 ℝcr 7931 ici 7934 + caddc 7935 · cmul 7937 #ℝ creap 8654 # cap 8661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 |
| This theorem is referenced by: mulap0r 8695 aptap 8730 eirr 12134 dcapnconst 16074 |
| Copyright terms: Public domain | W3C validator |