| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-er | GIF version | ||
| Description: Define the equivalence relation predicate. Our notation is not standard. A formal notation doesn't seem to exist in the literature; instead only informal English tends to be used. The present definition, although somewhat cryptic, nicely avoids dummy variables. In dfer2 6593 we derive a more typical definition. We show that an equivalence relation is reflexive, symmetric, and transitive in erref 6612, ersymb 6606, and ertr 6607. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 2-Nov-2015.) | 
| Ref | Expression | 
|---|---|
| df-er | ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wer 6589 | . 2 wff 𝑅 Er 𝐴 | 
| 4 | 2 | wrel 4668 | . . 3 wff Rel 𝑅 | 
| 5 | 2 | cdm 4663 | . . . 4 class dom 𝑅 | 
| 6 | 5, 1 | wceq 1364 | . . 3 wff dom 𝑅 = 𝐴 | 
| 7 | 2 | ccnv 4662 | . . . . 5 class ◡𝑅 | 
| 8 | 2, 2 | ccom 4667 | . . . . 5 class (𝑅 ∘ 𝑅) | 
| 9 | 7, 8 | cun 3155 | . . . 4 class (◡𝑅 ∪ (𝑅 ∘ 𝑅)) | 
| 10 | 9, 2 | wss 3157 | . . 3 wff (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅 | 
| 11 | 4, 6, 10 | w3a 980 | . 2 wff (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) | 
| 12 | 3, 11 | wb 105 | 1 wff (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | 
| Colors of variables: wff set class | 
| This definition is referenced by: dfer2 6593 ereq1 6599 ereq2 6600 errel 6601 erdm 6602 ersym 6604 ertr 6607 xpider 6665 | 
| Copyright terms: Public domain | W3C validator |