ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm GIF version

Theorem erdm 6393
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6383 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 980 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1314  cun 3035  wss 3037  ccnv 4498  dom cdm 4499  ccom 4503  Rel wrel 4504   Er wer 6380
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-3an 947  df-er 6383
This theorem is referenced by:  ercl  6394  erref  6403  errn  6405  erssxp  6406  erexb  6408  ereldm  6426  uniqs2  6443  iinerm  6455  th3qlem1  6485  0nnq  7120  nnnq0lem1  7202  prsrlem1  7485  gt0srpr  7491  0nsr  7492
  Copyright terms: Public domain W3C validator