![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > erdm | GIF version |
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 6537 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp2bi 1013 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∪ cun 3129 ⊆ wss 3131 ◡ccnv 4627 dom cdm 4628 ∘ ccom 4632 Rel wrel 4633 Er wer 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-er 6537 |
This theorem is referenced by: ercl 6548 erref 6557 errn 6559 erssxp 6560 erexb 6562 ereldm 6580 uniqs2 6597 iinerm 6609 th3qlem1 6639 0nnq 7365 nnnq0lem1 7447 prsrlem1 7743 gt0srpr 7749 0nsr 7750 |
Copyright terms: Public domain | W3C validator |