| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erdm | GIF version | ||
| Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-er 6619 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 2 | 1 | simp2bi 1015 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∪ cun 3163 ⊆ wss 3165 ◡ccnv 4673 dom cdm 4674 ∘ ccom 4678 Rel wrel 4679 Er wer 6616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-er 6619 |
| This theorem is referenced by: ercl 6630 erref 6639 errn 6641 erssxp 6642 erexb 6644 ereldm 6664 uniqs2 6681 iinerm 6693 th3qlem1 6723 0nnq 7476 nnnq0lem1 7558 prsrlem1 7854 gt0srpr 7860 0nsr 7861 divsfval 13131 |
| Copyright terms: Public domain | W3C validator |