| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erdm | GIF version | ||
| Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-er 6592 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 2 | 1 | simp2bi 1015 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∪ cun 3155 ⊆ wss 3157 ◡ccnv 4662 dom cdm 4663 ∘ ccom 4667 Rel wrel 4668 Er wer 6589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-er 6592 |
| This theorem is referenced by: ercl 6603 erref 6612 errn 6614 erssxp 6615 erexb 6617 ereldm 6637 uniqs2 6654 iinerm 6666 th3qlem1 6696 0nnq 7431 nnnq0lem1 7513 prsrlem1 7809 gt0srpr 7815 0nsr 7816 divsfval 12971 |
| Copyright terms: Public domain | W3C validator |