ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm GIF version

Theorem erdm 6629
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6619 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1015 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  cun 3163  wss 3165  ccnv 4673  dom cdm 4674  ccom 4678  Rel wrel 4679   Er wer 6616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 982  df-er 6619
This theorem is referenced by:  ercl  6630  erref  6639  errn  6641  erssxp  6642  erexb  6644  ereldm  6664  uniqs2  6681  iinerm  6693  th3qlem1  6723  0nnq  7476  nnnq0lem1  7558  prsrlem1  7854  gt0srpr  7860  0nsr  7861  divsfval  13131
  Copyright terms: Public domain W3C validator