Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > erdm | GIF version |
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 6501 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp2bi 1003 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∪ cun 3114 ⊆ wss 3116 ◡ccnv 4603 dom cdm 4604 ∘ ccom 4608 Rel wrel 4609 Er wer 6498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-er 6501 |
This theorem is referenced by: ercl 6512 erref 6521 errn 6523 erssxp 6524 erexb 6526 ereldm 6544 uniqs2 6561 iinerm 6573 th3qlem1 6603 0nnq 7305 nnnq0lem1 7387 prsrlem1 7683 gt0srpr 7689 0nsr 7690 |
Copyright terms: Public domain | W3C validator |