ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm GIF version

Theorem erdm 6688
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6678 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1037 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  cun 3195  wss 3197  ccnv 4717  dom cdm 4718  ccom 4722  Rel wrel 4723   Er wer 6675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-er 6678
This theorem is referenced by:  ercl  6689  erref  6698  errn  6700  erssxp  6701  erexb  6703  ereldm  6723  uniqs2  6740  iinerm  6752  th3qlem1  6782  0nnq  7547  nnnq0lem1  7629  prsrlem1  7925  gt0srpr  7931  0nsr  7932  divsfval  13356
  Copyright terms: Public domain W3C validator