ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm GIF version

Theorem erdm 6653
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6643 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1016 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cun 3172  wss 3174  ccnv 4692  dom cdm 4693  ccom 4697  Rel wrel 4698   Er wer 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 983  df-er 6643
This theorem is referenced by:  ercl  6654  erref  6663  errn  6665  erssxp  6666  erexb  6668  ereldm  6688  uniqs2  6705  iinerm  6717  th3qlem1  6747  0nnq  7512  nnnq0lem1  7594  prsrlem1  7890  gt0srpr  7896  0nsr  7897  divsfval  13275
  Copyright terms: Public domain W3C validator