| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erdm | GIF version | ||
| Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-er 6643 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 2 | 1 | simp2bi 1016 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∪ cun 3172 ⊆ wss 3174 ◡ccnv 4692 dom cdm 4693 ∘ ccom 4697 Rel wrel 4698 Er wer 6640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-er 6643 |
| This theorem is referenced by: ercl 6654 erref 6663 errn 6665 erssxp 6666 erexb 6668 ereldm 6688 uniqs2 6705 iinerm 6717 th3qlem1 6747 0nnq 7512 nnnq0lem1 7594 prsrlem1 7890 gt0srpr 7896 0nsr 7897 divsfval 13275 |
| Copyright terms: Public domain | W3C validator |