ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm GIF version

Theorem erdm 6547
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6537 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1013 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  cun 3129  wss 3131  ccnv 4627  dom cdm 4628  ccom 4632  Rel wrel 4633   Er wer 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 980  df-er 6537
This theorem is referenced by:  ercl  6548  erref  6557  errn  6559  erssxp  6560  erexb  6562  ereldm  6580  uniqs2  6597  iinerm  6609  th3qlem1  6639  0nnq  7365  nnnq0lem1  7447  prsrlem1  7743  gt0srpr  7749  0nsr  7750
  Copyright terms: Public domain W3C validator