ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm GIF version

Theorem erdm 6602
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6592 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1015 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cun 3155  wss 3157  ccnv 4662  dom cdm 4663  ccom 4667  Rel wrel 4668   Er wer 6589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 982  df-er 6592
This theorem is referenced by:  ercl  6603  erref  6612  errn  6614  erssxp  6615  erexb  6617  ereldm  6637  uniqs2  6654  iinerm  6666  th3qlem1  6696  0nnq  7431  nnnq0lem1  7513  prsrlem1  7809  gt0srpr  7815  0nsr  7816  divsfval  12971
  Copyright terms: Public domain W3C validator