![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > erdm | GIF version |
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 6383 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp2bi 980 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1314 ∪ cun 3035 ⊆ wss 3037 ◡ccnv 4498 dom cdm 4499 ∘ ccom 4503 Rel wrel 4504 Er wer 6380 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-er 6383 |
This theorem is referenced by: ercl 6394 erref 6403 errn 6405 erssxp 6406 erexb 6408 ereldm 6426 uniqs2 6443 iinerm 6455 th3qlem1 6485 0nnq 7120 nnnq0lem1 7202 prsrlem1 7485 gt0srpr 7491 0nsr 7492 |
Copyright terms: Public domain | W3C validator |