![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > erdm | GIF version |
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 6589 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp2bi 1015 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∪ cun 3152 ⊆ wss 3154 ◡ccnv 4659 dom cdm 4660 ∘ ccom 4664 Rel wrel 4665 Er wer 6586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-er 6589 |
This theorem is referenced by: ercl 6600 erref 6609 errn 6611 erssxp 6612 erexb 6614 ereldm 6634 uniqs2 6651 iinerm 6663 th3qlem1 6693 0nnq 7426 nnnq0lem1 7508 prsrlem1 7804 gt0srpr 7810 0nsr 7811 divsfval 12914 |
Copyright terms: Public domain | W3C validator |