| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erdm | GIF version | ||
| Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-er 6678 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 2 | 1 | simp2bi 1037 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∪ cun 3195 ⊆ wss 3197 ◡ccnv 4717 dom cdm 4718 ∘ ccom 4722 Rel wrel 4723 Er wer 6675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-er 6678 |
| This theorem is referenced by: ercl 6689 erref 6698 errn 6700 erssxp 6701 erexb 6703 ereldm 6723 uniqs2 6740 iinerm 6752 th3qlem1 6782 0nnq 7547 nnnq0lem1 7629 prsrlem1 7925 gt0srpr 7931 0nsr 7932 divsfval 13356 |
| Copyright terms: Public domain | W3C validator |