Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > erdm | GIF version |
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erdm | ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 6513 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp2bi 1008 | 1 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∪ cun 3119 ⊆ wss 3121 ◡ccnv 4610 dom cdm 4611 ∘ ccom 4615 Rel wrel 4616 Er wer 6510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-er 6513 |
This theorem is referenced by: ercl 6524 erref 6533 errn 6535 erssxp 6536 erexb 6538 ereldm 6556 uniqs2 6573 iinerm 6585 th3qlem1 6615 0nnq 7326 nnnq0lem1 7408 prsrlem1 7704 gt0srpr 7710 0nsr 7711 |
Copyright terms: Public domain | W3C validator |