ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm GIF version

Theorem erdm 6611
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6601 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1015 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cun 3155  wss 3157  ccnv 4663  dom cdm 4664  ccom 4668  Rel wrel 4669   Er wer 6598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 982  df-er 6601
This theorem is referenced by:  ercl  6612  erref  6621  errn  6623  erssxp  6624  erexb  6626  ereldm  6646  uniqs2  6663  iinerm  6675  th3qlem1  6705  0nnq  7448  nnnq0lem1  7530  prsrlem1  7826  gt0srpr  7832  0nsr  7833  divsfval  13030
  Copyright terms: Public domain W3C validator