ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm GIF version

Theorem erdm 6630
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6620 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1016 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cun 3164  wss 3166  ccnv 4674  dom cdm 4675  ccom 4679  Rel wrel 4680   Er wer 6617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 983  df-er 6620
This theorem is referenced by:  ercl  6631  erref  6640  errn  6642  erssxp  6643  erexb  6645  ereldm  6665  uniqs2  6682  iinerm  6694  th3qlem1  6724  0nnq  7477  nnnq0lem1  7559  prsrlem1  7855  gt0srpr  7861  0nsr  7862  divsfval  13160
  Copyright terms: Public domain W3C validator