ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erdm GIF version

Theorem erdm 6597
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 6587 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1015 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cun 3151  wss 3153  ccnv 4658  dom cdm 4659  ccom 4663  Rel wrel 4664   Er wer 6584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 982  df-er 6587
This theorem is referenced by:  ercl  6598  erref  6607  errn  6609  erssxp  6610  erexb  6612  ereldm  6632  uniqs2  6649  iinerm  6661  th3qlem1  6691  0nnq  7424  nnnq0lem1  7506  prsrlem1  7802  gt0srpr  7808  0nsr  7809  divsfval  12911
  Copyright terms: Public domain W3C validator