Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ersymb | GIF version |
Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
Ref | Expression |
---|---|
ersymb | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ersymb.1 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
2 | 1 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝑅 Er 𝑋) |
3 | simpr 109 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝐴𝑅𝐵) | |
4 | 2, 3 | ersym 6525 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑅𝐵) → 𝐵𝑅𝐴) |
5 | 1 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝐵𝑅𝐴) → 𝑅 Er 𝑋) |
6 | simpr 109 | . . 3 ⊢ ((𝜑 ∧ 𝐵𝑅𝐴) → 𝐵𝑅𝐴) | |
7 | 5, 6 | ersym 6525 | . 2 ⊢ ((𝜑 ∧ 𝐵𝑅𝐴) → 𝐴𝑅𝐵) |
8 | 4, 7 | impbida 591 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 class class class wbr 3989 Er wer 6510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-er 6513 |
This theorem is referenced by: ercnv 6534 erth 6557 erth2 6558 iinerm 6585 ensymb 6758 |
Copyright terms: Public domain | W3C validator |