ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ersymb GIF version

Theorem ersymb 6694
Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
Assertion
Ref Expression
ersymb (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem ersymb
StepHypRef Expression
1 ersymb.1 . . . 4 (𝜑𝑅 Er 𝑋)
21adantr 276 . . 3 ((𝜑𝐴𝑅𝐵) → 𝑅 Er 𝑋)
3 simpr 110 . . 3 ((𝜑𝐴𝑅𝐵) → 𝐴𝑅𝐵)
42, 3ersym 6692 . 2 ((𝜑𝐴𝑅𝐵) → 𝐵𝑅𝐴)
51adantr 276 . . 3 ((𝜑𝐵𝑅𝐴) → 𝑅 Er 𝑋)
6 simpr 110 . . 3 ((𝜑𝐵𝑅𝐴) → 𝐵𝑅𝐴)
75, 6ersym 6692 . 2 ((𝜑𝐵𝑅𝐴) → 𝐴𝑅𝐵)
84, 7impbida 598 1 (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   class class class wbr 4083   Er wer 6677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-er 6680
This theorem is referenced by:  ercnv  6701  erth  6726  erth2  6727  iinerm  6754  ensymb  6932
  Copyright terms: Public domain W3C validator