ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ersymb GIF version

Theorem ersymb 6562
Description: An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
Assertion
Ref Expression
ersymb (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem ersymb
StepHypRef Expression
1 ersymb.1 . . . 4 (𝜑𝑅 Er 𝑋)
21adantr 276 . . 3 ((𝜑𝐴𝑅𝐵) → 𝑅 Er 𝑋)
3 simpr 110 . . 3 ((𝜑𝐴𝑅𝐵) → 𝐴𝑅𝐵)
42, 3ersym 6560 . 2 ((𝜑𝐴𝑅𝐵) → 𝐵𝑅𝐴)
51adantr 276 . . 3 ((𝜑𝐵𝑅𝐴) → 𝑅 Er 𝑋)
6 simpr 110 . . 3 ((𝜑𝐵𝑅𝐴) → 𝐵𝑅𝐴)
75, 6ersym 6560 . 2 ((𝜑𝐵𝑅𝐴) → 𝐴𝑅𝐵)
84, 7impbida 596 1 (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   class class class wbr 4015   Er wer 6545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-xp 4644  df-rel 4645  df-cnv 4646  df-er 6548
This theorem is referenced by:  ercnv  6569  erth  6592  erth2  6593  iinerm  6620  ensymb  6793
  Copyright terms: Public domain W3C validator