Type | Label | Description |
Statement |
|
Theorem | nntri2or2 6501 |
A trichotomy law for natural numbers. (Contributed by Jim Kingdon,
15-Sep-2021.)
|
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (๐ด โ ๐ต โจ ๐ต โ ๐ด)) |
|
Theorem | nndceq 6502 |
Equality of natural numbers is decidable. Theorem 7.2.6 of [HoTT], p.
(varies). For the specific case where ๐ต is zero, see nndceq0 4619.
(Contributed by Jim Kingdon, 31-Aug-2019.)
|
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ
DECID ๐ด =
๐ต) |
|
Theorem | nndcel 6503 |
Set membership between two natural numbers is decidable. (Contributed by
Jim Kingdon, 6-Sep-2019.)
|
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ
DECID ๐ด
โ ๐ต) |
|
Theorem | nnsseleq 6504 |
For natural numbers, inclusion is equivalent to membership or equality.
(Contributed by Jim Kingdon, 16-Sep-2021.)
|
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (๐ด โ ๐ต โ (๐ด โ ๐ต โจ ๐ด = ๐ต))) |
|
Theorem | nnsssuc 6505 |
A natural number is a subset of another natural number if and only if it
belongs to its successor. (Contributed by Jim Kingdon, 22-Jul-2023.)
|
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (๐ด โ ๐ต โ ๐ด โ suc ๐ต)) |
|
Theorem | nntr2 6506 |
Transitive law for natural numbers. (Contributed by Jim Kingdon,
22-Jul-2023.)
|
โข ((๐ด โ ฯ โง ๐ถ โ ฯ) โ ((๐ด โ ๐ต โง ๐ต โ ๐ถ) โ ๐ด โ ๐ถ)) |
|
Theorem | dcdifsnid 6507* |
If we remove a single element from a set with decidable equality then
put it back in, we end up with the original set. This strengthens
difsnss 3740 from subset to equality but the proof relies
on equality being
decidable. (Contributed by Jim Kingdon, 17-Jun-2022.)
|
โข ((โ๐ฅ โ ๐ด โ๐ฆ โ ๐ด DECID ๐ฅ = ๐ฆ โง ๐ต โ ๐ด) โ ((๐ด โ {๐ต}) โช {๐ต}) = ๐ด) |
|
Theorem | fnsnsplitdc 6508* |
Split a function into a single point and all the rest. (Contributed by
Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 29-Jan-2023.)
|
โข ((โ๐ฅ โ ๐ด โ๐ฆ โ ๐ด DECID ๐ฅ = ๐ฆ โง ๐น Fn ๐ด โง ๐ โ ๐ด) โ ๐น = ((๐น โพ (๐ด โ {๐})) โช {โจ๐, (๐นโ๐)โฉ})) |
|
Theorem | funresdfunsndc 6509* |
Restricting a function to a domain without one element of the domain of
the function, and adding a pair of this element and the function value
of the element results in the function itself, where equality is
decidable. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon,
30-Jan-2023.)
|
โข ((โ๐ฅ โ dom ๐นโ๐ฆ โ dom ๐นDECID ๐ฅ = ๐ฆ โง Fun ๐น โง ๐ โ dom ๐น) โ ((๐น โพ (V โ {๐})) โช {โจ๐, (๐นโ๐)โฉ}) = ๐น) |
|
Theorem | nndifsnid 6510 |
If we remove a single element from a natural number then put it back in,
we end up with the original natural number. This strengthens difsnss 3740
from subset to equality but the proof relies on equality being
decidable. (Contributed by Jim Kingdon, 31-Aug-2021.)
|
โข ((๐ด โ ฯ โง ๐ต โ ๐ด) โ ((๐ด โ {๐ต}) โช {๐ต}) = ๐ด) |
|
Theorem | nnaordi 6511 |
Ordering property of addition. Proposition 8.4 of [TakeutiZaring]
p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
โข ((๐ต โ ฯ โง ๐ถ โ ฯ) โ (๐ด โ ๐ต โ (๐ถ +o ๐ด) โ (๐ถ +o ๐ต))) |
|
Theorem | nnaord 6512 |
Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58,
limited to natural numbers, and its converse. (Contributed by NM,
7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
โข ((๐ด โ ฯ โง ๐ต โ ฯ โง ๐ถ โ ฯ) โ (๐ด โ ๐ต โ (๐ถ +o ๐ด) โ (๐ถ +o ๐ต))) |
|
Theorem | nnaordr 6513 |
Ordering property of addition of natural numbers. (Contributed by NM,
9-Nov-2002.)
|
โข ((๐ด โ ฯ โง ๐ต โ ฯ โง ๐ถ โ ฯ) โ (๐ด โ ๐ต โ (๐ด +o ๐ถ) โ (๐ต +o ๐ถ))) |
|
Theorem | nnaword 6514 |
Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
โข ((๐ด โ ฯ โง ๐ต โ ฯ โง ๐ถ โ ฯ) โ (๐ด โ ๐ต โ (๐ถ +o ๐ด) โ (๐ถ +o ๐ต))) |
|
Theorem | nnacan 6515 |
Cancellation law for addition of natural numbers. (Contributed by NM,
27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
โข ((๐ด โ ฯ โง ๐ต โ ฯ โง ๐ถ โ ฯ) โ ((๐ด +o ๐ต) = (๐ด +o ๐ถ) โ ๐ต = ๐ถ)) |
|
Theorem | nnaword1 6516 |
Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ ๐ด โ (๐ด +o ๐ต)) |
|
Theorem | nnaword2 6517 |
Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.)
|
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ ๐ด โ (๐ต +o ๐ด)) |
|
Theorem | nnawordi 6518 |
Adding to both sides of an inequality in ฯ.
(Contributed by Scott
Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 12-May-2012.)
|
โข ((๐ด โ ฯ โง ๐ต โ ฯ โง ๐ถ โ ฯ) โ (๐ด โ ๐ต โ (๐ด +o ๐ถ) โ (๐ต +o ๐ถ))) |
|
Theorem | nnmordi 6519 |
Ordering property of multiplication. Half of Proposition 8.19 of
[TakeutiZaring] p. 63, limited to
natural numbers. (Contributed by NM,
18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
โข (((๐ต โ ฯ โง ๐ถ โ ฯ) โง โ
โ ๐ถ) โ (๐ด โ ๐ต โ (๐ถ ยทo ๐ด) โ (๐ถ ยทo ๐ต))) |
|
Theorem | nnmord 6520 |
Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring]
p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.)
(Revised by Mario Carneiro, 15-Nov-2014.)
|
โข ((๐ด โ ฯ โง ๐ต โ ฯ โง ๐ถ โ ฯ) โ ((๐ด โ ๐ต โง โ
โ ๐ถ) โ (๐ถ ยทo ๐ด) โ (๐ถ ยทo ๐ต))) |
|
Theorem | nnmword 6521 |
Weak ordering property of ordinal multiplication. (Contributed by Mario
Carneiro, 17-Nov-2014.)
|
โข (((๐ด โ ฯ โง ๐ต โ ฯ โง ๐ถ โ ฯ) โง โ
โ ๐ถ) โ (๐ด โ ๐ต โ (๐ถ ยทo ๐ด) โ (๐ถ ยทo ๐ต))) |
|
Theorem | nnmcan 6522 |
Cancellation law for multiplication of natural numbers. (Contributed by
NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
โข (((๐ด โ ฯ โง ๐ต โ ฯ โง ๐ถ โ ฯ) โง โ
โ ๐ด) โ ((๐ด ยทo ๐ต) = (๐ด ยทo ๐ถ) โ ๐ต = ๐ถ)) |
|
Theorem | 1onn 6523 |
One is a natural number. (Contributed by NM, 29-Oct-1995.)
|
โข 1o โ
ฯ |
|
Theorem | 2onn 6524 |
The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.)
|
โข 2o โ
ฯ |
|
Theorem | 3onn 6525 |
The ordinal 3 is a natural number. (Contributed by Mario Carneiro,
5-Jan-2016.)
|
โข 3o โ
ฯ |
|
Theorem | 4onn 6526 |
The ordinal 4 is a natural number. (Contributed by Mario Carneiro,
5-Jan-2016.)
|
โข 4o โ
ฯ |
|
Theorem | 2ssom 6527 |
The ordinal 2 is included in the set of natural number ordinals.
(Contributed by BJ, 5-Aug-2024.)
|
โข 2o โ
ฯ |
|
Theorem | nnm1 6528 |
Multiply an element of ฯ by 1o. (Contributed by Mario
Carneiro, 17-Nov-2014.)
|
โข (๐ด โ ฯ โ (๐ด ยทo 1o) =
๐ด) |
|
Theorem | nnm2 6529 |
Multiply an element of ฯ by 2o. (Contributed by Scott Fenton,
18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
|
โข (๐ด โ ฯ โ (๐ด ยทo 2o) =
(๐ด +o ๐ด)) |
|
Theorem | nn2m 6530 |
Multiply an element of ฯ by 2o. (Contributed by Scott Fenton,
16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
|
โข (๐ด โ ฯ โ (2o
ยทo ๐ด) =
(๐ด +o ๐ด)) |
|
Theorem | nnaordex 6531* |
Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88.
(Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro,
15-Nov-2014.)
|
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (๐ด โ ๐ต โ โ๐ฅ โ ฯ (โ
โ ๐ฅ โง (๐ด +o ๐ฅ) = ๐ต))) |
|
Theorem | nnawordex 6532* |
Equivalence for weak ordering of natural numbers. (Contributed by NM,
8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
|
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ (๐ด โ ๐ต โ โ๐ฅ โ ฯ (๐ด +o ๐ฅ) = ๐ต)) |
|
Theorem | nnm00 6533 |
The product of two natural numbers is zero iff at least one of them is
zero. (Contributed by Jim Kingdon, 11-Nov-2004.)
|
โข ((๐ด โ ฯ โง ๐ต โ ฯ) โ ((๐ด ยทo ๐ต) = โ
โ (๐ด = โ
โจ ๐ต = โ
))) |
|
2.6.25 Equivalence relations and
classes
|
|
Syntax | wer 6534 |
Extend the definition of a wff to include the equivalence predicate.
|
wff ๐
Er ๐ด |
|
Syntax | cec 6535 |
Extend the definition of a class to include equivalence class.
|
class [๐ด]๐
|
|
Syntax | cqs 6536 |
Extend the definition of a class to include quotient set.
|
class (๐ด / ๐
) |
|
Definition | df-er 6537 |
Define the equivalence relation predicate. Our notation is not standard.
A formal notation doesn't seem to exist in the literature; instead only
informal English tends to be used. The present definition, although
somewhat cryptic, nicely avoids dummy variables. In dfer2 6538 we derive a
more typical definition. We show that an equivalence relation is
reflexive, symmetric, and transitive in erref 6557, ersymb 6551, and ertr 6552.
(Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro,
2-Nov-2015.)
|
โข (๐
Er ๐ด โ (Rel ๐
โง dom ๐
= ๐ด โง (โก๐
โช (๐
โ ๐
)) โ ๐
)) |
|
Theorem | dfer2 6538* |
Alternate definition of equivalence predicate. (Contributed by NM,
3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.)
|
โข (๐
Er ๐ด โ (Rel ๐
โง dom ๐
= ๐ด โง โ๐ฅโ๐ฆโ๐ง((๐ฅ๐
๐ฆ โ ๐ฆ๐
๐ฅ) โง ((๐ฅ๐
๐ฆ โง ๐ฆ๐
๐ง) โ ๐ฅ๐
๐ง)))) |
|
Definition | df-ec 6539 |
Define the ๐
-coset of ๐ด. Exercise 35 of [Enderton] p. 61. This
is called the equivalence class of ๐ด modulo ๐
when ๐
is an
equivalence relation (i.e. when Er ๐
; see dfer2 6538). In this case,
๐ด is a representative (member) of the
equivalence class [๐ด]๐
,
which contains all sets that are equivalent to ๐ด. Definition of
[Enderton] p. 57 uses the notation [๐ด]
(subscript) ๐
, although
we simply follow the brackets by ๐
since we don't have subscripted
expressions. For an alternate definition, see dfec2 6540. (Contributed by
NM, 23-Jul-1995.)
|
โข [๐ด]๐
= (๐
โ {๐ด}) |
|
Theorem | dfec2 6540* |
Alternate definition of ๐
-coset of ๐ด. Definition 34 of
[Suppes] p. 81. (Contributed by NM,
3-Jan-1997.) (Proof shortened by
Mario Carneiro, 9-Jul-2014.)
|
โข (๐ด โ ๐ โ [๐ด]๐
= {๐ฆ โฃ ๐ด๐
๐ฆ}) |
|
Theorem | ecexg 6541 |
An equivalence class modulo a set is a set. (Contributed by NM,
24-Jul-1995.)
|
โข (๐
โ ๐ต โ [๐ด]๐
โ V) |
|
Theorem | ecexr 6542 |
An inhabited equivalence class implies the representative is a set.
(Contributed by Mario Carneiro, 9-Jul-2014.)
|
โข (๐ด โ [๐ต]๐
โ ๐ต โ V) |
|
Definition | df-qs 6543* |
Define quotient set. ๐
is usually an equivalence relation.
Definition of [Enderton] p. 58.
(Contributed by NM, 23-Jul-1995.)
|
โข (๐ด / ๐
) = {๐ฆ โฃ โ๐ฅ โ ๐ด ๐ฆ = [๐ฅ]๐
} |
|
Theorem | ereq1 6544 |
Equality theorem for equivalence predicate. (Contributed by NM,
4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
|
โข (๐
= ๐ โ (๐
Er ๐ด โ ๐ Er ๐ด)) |
|
Theorem | ereq2 6545 |
Equality theorem for equivalence predicate. (Contributed by Mario
Carneiro, 12-Aug-2015.)
|
โข (๐ด = ๐ต โ (๐
Er ๐ด โ ๐
Er ๐ต)) |
|
Theorem | errel 6546 |
An equivalence relation is a relation. (Contributed by Mario Carneiro,
12-Aug-2015.)
|
โข (๐
Er ๐ด โ Rel ๐
) |
|
Theorem | erdm 6547 |
The domain of an equivalence relation. (Contributed by Mario Carneiro,
12-Aug-2015.)
|
โข (๐
Er ๐ด โ dom ๐
= ๐ด) |
|
Theorem | ercl 6548 |
Elementhood in the field of an equivalence relation. (Contributed by
Mario Carneiro, 12-Aug-2015.)
|
โข (๐ โ ๐
Er ๐)
& โข (๐ โ ๐ด๐
๐ต) โ โข (๐ โ ๐ด โ ๐) |
|
Theorem | ersym 6549 |
An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.)
(Revised by Mario Carneiro, 12-Aug-2015.)
|
โข (๐ โ ๐
Er ๐)
& โข (๐ โ ๐ด๐
๐ต) โ โข (๐ โ ๐ต๐
๐ด) |
|
Theorem | ercl2 6550 |
Elementhood in the field of an equivalence relation. (Contributed by
Mario Carneiro, 12-Aug-2015.)
|
โข (๐ โ ๐
Er ๐)
& โข (๐ โ ๐ด๐
๐ต) โ โข (๐ โ ๐ต โ ๐) |
|
Theorem | ersymb 6551 |
An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.)
(Revised by Mario Carneiro, 12-Aug-2015.)
|
โข (๐ โ ๐
Er ๐) โ โข (๐ โ (๐ด๐
๐ต โ ๐ต๐
๐ด)) |
|
Theorem | ertr 6552 |
An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.)
(Revised by Mario Carneiro, 12-Aug-2015.)
|
โข (๐ โ ๐
Er ๐) โ โข (๐ โ ((๐ด๐
๐ต โง ๐ต๐
๐ถ) โ ๐ด๐
๐ถ)) |
|
Theorem | ertrd 6553 |
A transitivity relation for equivalences. (Contributed by Mario
Carneiro, 9-Jul-2014.)
|
โข (๐ โ ๐
Er ๐)
& โข (๐ โ ๐ด๐
๐ต)
& โข (๐ โ ๐ต๐
๐ถ) โ โข (๐ โ ๐ด๐
๐ถ) |
|
Theorem | ertr2d 6554 |
A transitivity relation for equivalences. (Contributed by Mario
Carneiro, 9-Jul-2014.)
|
โข (๐ โ ๐
Er ๐)
& โข (๐ โ ๐ด๐
๐ต)
& โข (๐ โ ๐ต๐
๐ถ) โ โข (๐ โ ๐ถ๐
๐ด) |
|
Theorem | ertr3d 6555 |
A transitivity relation for equivalences. (Contributed by Mario
Carneiro, 9-Jul-2014.)
|
โข (๐ โ ๐
Er ๐)
& โข (๐ โ ๐ต๐
๐ด)
& โข (๐ โ ๐ต๐
๐ถ) โ โข (๐ โ ๐ด๐
๐ถ) |
|
Theorem | ertr4d 6556 |
A transitivity relation for equivalences. (Contributed by Mario
Carneiro, 9-Jul-2014.)
|
โข (๐ โ ๐
Er ๐)
& โข (๐ โ ๐ด๐
๐ต)
& โข (๐ โ ๐ถ๐
๐ต) โ โข (๐ โ ๐ด๐
๐ถ) |
|
Theorem | erref 6557 |
An equivalence relation is reflexive on its field. Compare Theorem 3M
of [Enderton] p. 56. (Contributed by
Mario Carneiro, 6-May-2013.)
(Revised by Mario Carneiro, 12-Aug-2015.)
|
โข (๐ โ ๐
Er ๐)
& โข (๐ โ ๐ด โ ๐) โ โข (๐ โ ๐ด๐
๐ด) |
|
Theorem | ercnv 6558 |
The converse of an equivalence relation is itself. (Contributed by
Mario Carneiro, 12-Aug-2015.)
|
โข (๐
Er ๐ด โ โก๐
= ๐
) |
|
Theorem | errn 6559 |
The range and domain of an equivalence relation are equal. (Contributed
by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro,
12-Aug-2015.)
|
โข (๐
Er ๐ด โ ran ๐
= ๐ด) |
|
Theorem | erssxp 6560 |
An equivalence relation is a subset of the cartesian product of the field.
(Contributed by Mario Carneiro, 12-Aug-2015.)
|
โข (๐
Er ๐ด โ ๐
โ (๐ด ร ๐ด)) |
|
Theorem | erex 6561 |
An equivalence relation is a set if its domain is a set. (Contributed by
Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro,
12-Aug-2015.)
|
โข (๐
Er ๐ด โ (๐ด โ ๐ โ ๐
โ V)) |
|
Theorem | erexb 6562 |
An equivalence relation is a set if and only if its domain is a set.
(Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro,
12-Aug-2015.)
|
โข (๐
Er ๐ด โ (๐
โ V โ ๐ด โ V)) |
|
Theorem | iserd 6563* |
A reflexive, symmetric, transitive relation is an equivalence relation
on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised
by Mario Carneiro, 12-Aug-2015.)
|
โข (๐ โ Rel ๐
)
& โข ((๐ โง ๐ฅ๐
๐ฆ) โ ๐ฆ๐
๐ฅ)
& โข ((๐ โง (๐ฅ๐
๐ฆ โง ๐ฆ๐
๐ง)) โ ๐ฅ๐
๐ง)
& โข (๐ โ (๐ฅ โ ๐ด โ ๐ฅ๐
๐ฅ)) โ โข (๐ โ ๐
Er ๐ด) |
|
Theorem | brdifun 6564 |
Evaluate the incomparability relation. (Contributed by Mario Carneiro,
9-Jul-2014.)
|
โข ๐
= ((๐ ร ๐) โ ( < โช โก <
)) โ โข ((๐ด โ ๐ โง ๐ต โ ๐) โ (๐ด๐
๐ต โ ยฌ (๐ด < ๐ต โจ ๐ต < ๐ด))) |
|
Theorem | swoer 6565* |
Incomparability under a strict weak partial order is an equivalence
relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by
Mario Carneiro, 12-Aug-2015.)
|
โข ๐
= ((๐ ร ๐) โ ( < โช โก < )) & โข ((๐ โง (๐ฆ โ ๐ โง ๐ง โ ๐)) โ (๐ฆ < ๐ง โ ยฌ ๐ง < ๐ฆ))
& โข ((๐ โง (๐ฅ โ ๐ โง ๐ฆ โ ๐ โง ๐ง โ ๐)) โ (๐ฅ < ๐ฆ โ (๐ฅ < ๐ง โจ ๐ง < ๐ฆ))) โ โข (๐ โ ๐
Er ๐) |
|
Theorem | swoord1 6566* |
The incomparability equivalence relation is compatible with the
original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
|
โข ๐
= ((๐ ร ๐) โ ( < โช โก < )) & โข ((๐ โง (๐ฆ โ ๐ โง ๐ง โ ๐)) โ (๐ฆ < ๐ง โ ยฌ ๐ง < ๐ฆ))
& โข ((๐ โง (๐ฅ โ ๐ โง ๐ฆ โ ๐ โง ๐ง โ ๐)) โ (๐ฅ < ๐ฆ โ (๐ฅ < ๐ง โจ ๐ง < ๐ฆ))) & โข (๐ โ ๐ต โ ๐)
& โข (๐ โ ๐ถ โ ๐)
& โข (๐ โ ๐ด๐
๐ต) โ โข (๐ โ (๐ด < ๐ถ โ ๐ต < ๐ถ)) |
|
Theorem | swoord2 6567* |
The incomparability equivalence relation is compatible with the
original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
|
โข ๐
= ((๐ ร ๐) โ ( < โช โก < )) & โข ((๐ โง (๐ฆ โ ๐ โง ๐ง โ ๐)) โ (๐ฆ < ๐ง โ ยฌ ๐ง < ๐ฆ))
& โข ((๐ โง (๐ฅ โ ๐ โง ๐ฆ โ ๐ โง ๐ง โ ๐)) โ (๐ฅ < ๐ฆ โ (๐ฅ < ๐ง โจ ๐ง < ๐ฆ))) & โข (๐ โ ๐ต โ ๐)
& โข (๐ โ ๐ถ โ ๐)
& โข (๐ โ ๐ด๐
๐ต) โ โข (๐ โ (๐ถ < ๐ด โ ๐ถ < ๐ต)) |
|
Theorem | eqerlem 6568* |
Lemma for eqer 6569. (Contributed by NM, 17-Mar-2008.) (Proof
shortened
by Mario Carneiro, 6-Dec-2016.)
|
โข (๐ฅ = ๐ฆ โ ๐ด = ๐ต)
& โข ๐
= {โจ๐ฅ, ๐ฆโฉ โฃ ๐ด = ๐ต} โ โข (๐ง๐
๐ค โ โฆ๐ง / ๐ฅโฆ๐ด = โฆ๐ค / ๐ฅโฆ๐ด) |
|
Theorem | eqer 6569* |
Equivalence relation involving equality of dependent classes ๐ด(๐ฅ)
and ๐ต(๐ฆ). (Contributed by NM, 17-Mar-2008.)
(Revised by Mario
Carneiro, 12-Aug-2015.)
|
โข (๐ฅ = ๐ฆ โ ๐ด = ๐ต)
& โข ๐
= {โจ๐ฅ, ๐ฆโฉ โฃ ๐ด = ๐ต} โ โข ๐
Er V |
|
Theorem | ider 6570 |
The identity relation is an equivalence relation. (Contributed by NM,
10-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof
shortened by Mario Carneiro, 9-Jul-2014.)
|
โข I Er V |
|
Theorem | 0er 6571 |
The empty set is an equivalence relation on the empty set. (Contributed
by Mario Carneiro, 5-Sep-2015.)
|
โข โ
Er โ
|
|
Theorem | eceq1 6572 |
Equality theorem for equivalence class. (Contributed by NM,
23-Jul-1995.)
|
โข (๐ด = ๐ต โ [๐ด]๐ถ = [๐ต]๐ถ) |
|
Theorem | eceq1d 6573 |
Equality theorem for equivalence class (deduction form). (Contributed
by Jim Kingdon, 31-Dec-2019.)
|
โข (๐ โ ๐ด = ๐ต) โ โข (๐ โ [๐ด]๐ถ = [๐ต]๐ถ) |
|
Theorem | eceq2 6574 |
Equality theorem for equivalence class. (Contributed by NM,
23-Jul-1995.)
|
โข (๐ด = ๐ต โ [๐ถ]๐ด = [๐ถ]๐ต) |
|
Theorem | elecg 6575 |
Membership in an equivalence class. Theorem 72 of [Suppes] p. 82.
(Contributed by Mario Carneiro, 9-Jul-2014.)
|
โข ((๐ด โ ๐ โง ๐ต โ ๐) โ (๐ด โ [๐ต]๐
โ ๐ต๐
๐ด)) |
|
Theorem | elec 6576 |
Membership in an equivalence class. Theorem 72 of [Suppes] p. 82.
(Contributed by NM, 23-Jul-1995.)
|
โข ๐ด โ V & โข ๐ต โ
V โ โข (๐ด โ [๐ต]๐
โ ๐ต๐
๐ด) |
|
Theorem | relelec 6577 |
Membership in an equivalence class when ๐
is a relation. (Contributed
by Mario Carneiro, 11-Sep-2015.)
|
โข (Rel ๐
โ (๐ด โ [๐ต]๐
โ ๐ต๐
๐ด)) |
|
Theorem | ecss 6578 |
An equivalence class is a subset of the domain. (Contributed by NM,
6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
|
โข (๐ โ ๐
Er ๐) โ โข (๐ โ [๐ด]๐
โ ๐) |
|
Theorem | ecdmn0m 6579* |
A representative of an inhabited equivalence class belongs to the domain
of the equivalence relation. (Contributed by Jim Kingdon,
21-Aug-2019.)
|
โข (๐ด โ dom ๐
โ โ๐ฅ ๐ฅ โ [๐ด]๐
) |
|
Theorem | ereldm 6580 |
Equality of equivalence classes implies equivalence of domain
membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario
Carneiro, 12-Aug-2015.)
|
โข (๐ โ ๐
Er ๐)
& โข (๐ โ [๐ด]๐
= [๐ต]๐
) โ โข (๐ โ (๐ด โ ๐ โ ๐ต โ ๐)) |
|
Theorem | erth 6581 |
Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82.
(Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro,
6-Jul-2015.)
|
โข (๐ โ ๐
Er ๐)
& โข (๐ โ ๐ด โ ๐) โ โข (๐ โ (๐ด๐
๐ต โ [๐ด]๐
= [๐ต]๐
)) |
|
Theorem | erth2 6582 |
Basic property of equivalence relations. Compare Theorem 73 of [Suppes]
p. 82. Assumes membership of the second argument in the domain.
(Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro,
6-Jul-2015.)
|
โข (๐ โ ๐
Er ๐)
& โข (๐ โ ๐ต โ ๐) โ โข (๐ โ (๐ด๐
๐ต โ [๐ด]๐
= [๐ต]๐
)) |
|
Theorem | erthi 6583 |
Basic property of equivalence relations. Part of Lemma 3N of [Enderton]
p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro,
9-Jul-2014.)
|
โข (๐ โ ๐
Er ๐)
& โข (๐ โ ๐ด๐
๐ต) โ โข (๐ โ [๐ด]๐
= [๐ต]๐
) |
|
Theorem | ecidsn 6584 |
An equivalence class modulo the identity relation is a singleton.
(Contributed by NM, 24-Oct-2004.)
|
โข [๐ด] I = {๐ด} |
|
Theorem | qseq1 6585 |
Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
|
โข (๐ด = ๐ต โ (๐ด / ๐ถ) = (๐ต / ๐ถ)) |
|
Theorem | qseq2 6586 |
Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
|
โข (๐ด = ๐ต โ (๐ถ / ๐ด) = (๐ถ / ๐ต)) |
|
Theorem | elqsg 6587* |
Closed form of elqs 6588. (Contributed by Rodolfo Medina,
12-Oct-2010.)
|
โข (๐ต โ ๐ โ (๐ต โ (๐ด / ๐
) โ โ๐ฅ โ ๐ด ๐ต = [๐ฅ]๐
)) |
|
Theorem | elqs 6588* |
Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
|
โข ๐ต โ V โ โข (๐ต โ (๐ด / ๐
) โ โ๐ฅ โ ๐ด ๐ต = [๐ฅ]๐
) |
|
Theorem | elqsi 6589* |
Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
|
โข (๐ต โ (๐ด / ๐
) โ โ๐ฅ โ ๐ด ๐ต = [๐ฅ]๐
) |
|
Theorem | ecelqsg 6590 |
Membership of an equivalence class in a quotient set. (Contributed by
Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
โข ((๐
โ ๐ โง ๐ต โ ๐ด) โ [๐ต]๐
โ (๐ด / ๐
)) |
|
Theorem | ecelqsi 6591 |
Membership of an equivalence class in a quotient set. (Contributed by
NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
โข ๐
โ V โ โข (๐ต โ ๐ด โ [๐ต]๐
โ (๐ด / ๐
)) |
|
Theorem | ecopqsi 6592 |
"Closure" law for equivalence class of ordered pairs. (Contributed
by
NM, 25-Mar-1996.)
|
โข ๐
โ V & โข ๐ = ((๐ด ร ๐ด) / ๐
) โ โข ((๐ต โ ๐ด โง ๐ถ โ ๐ด) โ [โจ๐ต, ๐ถโฉ]๐
โ ๐) |
|
Theorem | qsexg 6593 |
A quotient set exists. (Contributed by FL, 19-May-2007.) (Revised by
Mario Carneiro, 9-Jul-2014.)
|
โข (๐ด โ ๐ โ (๐ด / ๐
) โ V) |
|
Theorem | qsex 6594 |
A quotient set exists. (Contributed by NM, 14-Aug-1995.)
|
โข ๐ด โ V โ โข (๐ด / ๐
) โ V |
|
Theorem | uniqs 6595 |
The union of a quotient set. (Contributed by NM, 9-Dec-2008.)
|
โข (๐
โ ๐ โ โช (๐ด / ๐
) = (๐
โ ๐ด)) |
|
Theorem | qsss 6596 |
A quotient set is a set of subsets of the base set. (Contributed by
Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro,
12-Aug-2015.)
|
โข (๐ โ ๐
Er ๐ด) โ โข (๐ โ (๐ด / ๐
) โ ๐ซ ๐ด) |
|
Theorem | uniqs2 6597 |
The union of a quotient set. (Contributed by Mario Carneiro,
11-Jul-2014.)
|
โข (๐ โ ๐
Er ๐ด)
& โข (๐ โ ๐
โ ๐) โ โข (๐ โ โช (๐ด / ๐
) = ๐ด) |
|
Theorem | snec 6598 |
The singleton of an equivalence class. (Contributed by NM,
29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
โข ๐ด โ V โ โข {[๐ด]๐
} = ({๐ด} / ๐
) |
|
Theorem | ecqs 6599 |
Equivalence class in terms of quotient set. (Contributed by NM,
29-Jan-1999.)
|
โข ๐
โ V โ โข [๐ด]๐
= โช ({๐ด} / ๐
) |
|
Theorem | ecid 6600 |
A set is equal to its converse epsilon coset. (Note: converse epsilon
is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.)
(Revised by Mario Carneiro, 9-Jul-2014.)
|
โข ๐ด โ V โ โข [๐ด]โก
E = ๐ด |