Home Intuitionistic Logic ExplorerTheorem List (p. 66 of 135) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6501-6600   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremelqsn0m 6501* An element of a quotient set is inhabited. (Contributed by Jim Kingdon, 21-Aug-2019.)
((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥𝐵)

Theoremelqsn0 6502 A quotient set doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.)
((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅)

Theoremecelqsdm 6503 Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995.)
((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → 𝐵𝐴)

Theoremxpider 6504 A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝐴 × 𝐴) Er 𝐴

Theoremiinerm 6505* The intersection of a nonempty family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → 𝑥𝐴 𝑅 Er 𝐵)

Theoremriinerm 6506* The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)

Theoremerinxp 6507 A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
(𝜑𝑅 Er 𝐴)    &   (𝜑𝐵𝐴)       (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵)

Theoremecinxp 6508 Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.)
(((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴)))

Theoremqsinxp 6509 Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
((𝑅𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))))

Theoremqsel 6510 If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.)
((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶𝐵) → 𝐵 = [𝐶]𝑅)

Theoremqliftlem 6511* 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))

Theoremqliftrel 6512* 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       (𝜑𝐹 ⊆ ((𝑋 / 𝑅) × 𝑌))

Theoremqliftel 6513* Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶𝑅𝑥𝐷 = 𝐴)))

Theoremqliftel1 6514* Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       ((𝜑𝑥𝑋) → [𝑥]𝑅𝐹𝐴)

Theoremqliftfun 6515* The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)    &   (𝑥 = 𝑦𝐴 = 𝐵)       (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝐴 = 𝐵)))

Theoremqliftfund 6516* The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   ((𝜑𝑥𝑅𝑦) → 𝐴 = 𝐵)       (𝜑 → Fun 𝐹)

Theoremqliftfuns 6517* The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑧(𝑦𝑅𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)))

Theoremqliftf 6518* The domain and range of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)       (𝜑 → (Fun 𝐹𝐹:(𝑋 / 𝑅)⟶𝑌))

Theoremqliftval 6519* The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑌)    &   (𝜑𝑅 Er 𝑋)    &   (𝜑𝑋 ∈ V)    &   (𝑥 = 𝐶𝐴 = 𝐵)    &   (𝜑 → Fun 𝐹)       ((𝜑𝐶𝑋) → (𝐹‘[𝐶]𝑅) = 𝐵)

Theoremecoptocl 6520* Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.)
𝑆 = ((𝐵 × 𝐶) / 𝑅)    &   ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))    &   ((𝑥𝐵𝑦𝐶) → 𝜑)       (𝐴𝑆𝜓)

Theorem2ecoptocl 6521* Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.)
𝑆 = ((𝐶 × 𝐷) / 𝑅)    &   ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))    &   ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → (𝜓𝜒))    &   (((𝑥𝐶𝑦𝐷) ∧ (𝑧𝐶𝑤𝐷)) → 𝜑)       ((𝐴𝑆𝐵𝑆) → 𝜒)

Theorem3ecoptocl 6522* Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.)
𝑆 = ((𝐷 × 𝐷) / 𝑅)    &   ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))    &   ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → (𝜓𝜒))    &   ([⟨𝑣, 𝑢⟩]𝑅 = 𝐶 → (𝜒𝜃))    &   (((𝑥𝐷𝑦𝐷) ∧ (𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → 𝜑)       ((𝐴𝑆𝐵𝑆𝐶𝑆) → 𝜃)

Theorembrecop 6523* Binary relation on a quotient set. Lemma for real number construction. (Contributed by NM, 29-Jan-1996.)
∈ V    &    Er (𝐺 × 𝐺)    &   𝐻 = ((𝐺 × 𝐺) / )    &    = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐻𝑦𝐻) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] 𝑦 = [⟨𝑣, 𝑢⟩] ) ∧ 𝜑))}    &   ((((𝑧𝐺𝑤𝐺) ∧ (𝐴𝐺𝐵𝐺)) ∧ ((𝑣𝐺𝑢𝐺) ∧ (𝐶𝐺𝐷𝐺))) → (([⟨𝑧, 𝑤⟩] = [⟨𝐴, 𝐵⟩] ∧ [⟨𝑣, 𝑢⟩] = [⟨𝐶, 𝐷⟩] ) → (𝜑𝜓)))       (((𝐴𝐺𝐵𝐺) ∧ (𝐶𝐺𝐷𝐺)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] 𝜓))

Theoremeroveu 6524* Lemma for eroprf 6526. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
𝐽 = (𝐴 / 𝑅)    &   𝐾 = (𝐵 / 𝑆)    &   (𝜑𝑇𝑍)    &   (𝜑𝑅 Er 𝑈)    &   (𝜑𝑆 Er 𝑉)    &   (𝜑𝑇 Er 𝑊)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑊)    &   (𝜑+ :(𝐴 × 𝐵)⟶𝐶)    &   ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))       ((𝜑 ∧ (𝑋𝐽𝑌𝐾)) → ∃!𝑧𝑝𝐴𝑞𝐵 ((𝑋 = [𝑝]𝑅𝑌 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))

Theoremerovlem 6525* Lemma for eroprf 6526. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
𝐽 = (𝐴 / 𝑅)    &   𝐾 = (𝐵 / 𝑆)    &   (𝜑𝑇𝑍)    &   (𝜑𝑅 Er 𝑈)    &   (𝜑𝑆 Er 𝑉)    &   (𝜑𝑇 Er 𝑊)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑊)    &   (𝜑+ :(𝐴 × 𝐵)⟶𝐶)    &   ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))    &    = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}       (𝜑 = (𝑥𝐽, 𝑦𝐾 ↦ (℩𝑧𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇))))

Theoremeroprf 6526* Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
𝐽 = (𝐴 / 𝑅)    &   𝐾 = (𝐵 / 𝑆)    &   (𝜑𝑇𝑍)    &   (𝜑𝑅 Er 𝑈)    &   (𝜑𝑆 Er 𝑉)    &   (𝜑𝑇 Er 𝑊)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑉)    &   (𝜑𝐶𝑊)    &   (𝜑+ :(𝐴 × 𝐵)⟶𝐶)    &   ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐵𝑢𝐵))) → ((𝑟𝑅𝑠𝑡𝑆𝑢) → (𝑟 + 𝑡)𝑇(𝑠 + 𝑢)))    &    = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐵 ((𝑥 = [𝑝]𝑅𝑦 = [𝑞]𝑆) ∧ 𝑧 = [(𝑝 + 𝑞)]𝑇)}    &   (𝜑𝑅𝑋)    &   (𝜑𝑆𝑌)    &   𝐿 = (𝐶 / 𝑇)       (𝜑 :(𝐽 × 𝐾)⟶𝐿)

Theoremeroprf2 6527* Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.)
𝐽 = (𝐴 / )    &    = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝐴𝑞𝐴 ((𝑥 = [𝑝] 𝑦 = [𝑞] ) ∧ 𝑧 = [(𝑝 + 𝑞)] )}    &   (𝜑𝑋)    &   (𝜑 Er 𝑈)    &   (𝜑𝐴𝑈)    &   (𝜑+ :(𝐴 × 𝐴)⟶𝐴)    &   ((𝜑 ∧ ((𝑟𝐴𝑠𝐴) ∧ (𝑡𝐴𝑢𝐴))) → ((𝑟 𝑠𝑡 𝑢) → (𝑟 + 𝑡) (𝑠 + 𝑢)))       (𝜑 :(𝐽 × 𝐽)⟶𝐽)

Theoremecopoveq 6528* This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation (specified by the hypothesis) in terms of its operation 𝐹. (Contributed by NM, 16-Aug-1995.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}       (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵𝐶, 𝐷⟩ ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶)))

Theoremecopovsym 6529* Assuming the operation 𝐹 is commutative, show that the relation , specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   (𝑥 + 𝑦) = (𝑦 + 𝑥)       (𝐴 𝐵𝐵 𝐴)

Theoremecopovtrn 6530* Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is transitive. (Contributed by NM, 11-Feb-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   (𝑥 + 𝑦) = (𝑦 + 𝑥)    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))    &   ((𝑥𝑆𝑦𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))       ((𝐴 𝐵𝐵 𝐶) → 𝐴 𝐶)

Theoremecopover 6531* Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   (𝑥 + 𝑦) = (𝑦 + 𝑥)    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))    &   ((𝑥𝑆𝑦𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))        Er (𝑆 × 𝑆)

Theoremecopovsymg 6532* Assuming the operation 𝐹 is commutative, show that the relation , specified by the first hypothesis, is symmetric. (Contributed by Jim Kingdon, 1-Sep-2019.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))       (𝐴 𝐵𝐵 𝐴)

Theoremecopovtrng 6533* Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is transitive. (Contributed by Jim Kingdon, 1-Sep-2019.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))       ((𝐴 𝐵𝐵 𝐶) → 𝐴 𝐶)

Theoremecopoverg 6534* Assuming that operation 𝐹 is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is an equivalence relation. (Contributed by Jim Kingdon, 1-Sep-2019.)
= {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) = (𝑦 + 𝑥))    &   ((𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &   ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   ((𝑥𝑆𝑦𝑆𝑧𝑆) → ((𝑥 + 𝑦) = (𝑥 + 𝑧) → 𝑦 = 𝑧))        Er (𝑆 × 𝑆)

Theoremth3qlem1 6535* Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60. The third hypothesis is the compatibility assumption. (Contributed by NM, 3-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Er 𝑆    &   (((𝑦𝑆𝑤𝑆) ∧ (𝑧𝑆𝑣𝑆)) → ((𝑦 𝑤𝑧 𝑣) → (𝑦 + 𝑧) (𝑤 + 𝑣)))       ((𝐴 ∈ (𝑆 / ) ∧ 𝐵 ∈ (𝑆 / )) → ∃*𝑥𝑦𝑧((𝐴 = [𝑦] 𝐵 = [𝑧] ) ∧ 𝑥 = [(𝑦 + 𝑧)] ))

Theoremth3qlem2 6536* Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. The fourth hypothesis is the compatibility assumption. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
∈ V    &    Er (𝑆 × 𝑆)    &   ((((𝑤𝑆𝑣𝑆) ∧ (𝑢𝑆𝑡𝑆)) ∧ ((𝑠𝑆𝑓𝑆) ∧ (𝑔𝑆𝑆))) → ((⟨𝑤, 𝑣𝑢, 𝑡⟩ ∧ ⟨𝑠, 𝑓𝑔, ⟩) → (⟨𝑤, 𝑣+𝑠, 𝑓⟩) (⟨𝑢, 𝑡+𝑔, ⟩)))       ((𝐴 ∈ ((𝑆 × 𝑆) / ) ∧ 𝐵 ∈ ((𝑆 × 𝑆) / )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] 𝐵 = [⟨𝑢, 𝑡⟩] ) ∧ 𝑧 = [(⟨𝑤, 𝑣+𝑢, 𝑡⟩)] ))

Theoremth3qcor 6537* Corollary of Theorem 3Q of [Enderton] p. 60. (Contributed by NM, 12-Nov-1995.) (Revised by David Abernethy, 4-Jun-2013.)
∈ V    &    Er (𝑆 × 𝑆)    &   ((((𝑤𝑆𝑣𝑆) ∧ (𝑢𝑆𝑡𝑆)) ∧ ((𝑠𝑆𝑓𝑆) ∧ (𝑔𝑆𝑆))) → ((⟨𝑤, 𝑣𝑢, 𝑡⟩ ∧ ⟨𝑠, 𝑓𝑔, ⟩) → (⟨𝑤, 𝑣+𝑠, 𝑓⟩) (⟨𝑢, 𝑡+𝑔, ⟩)))    &   𝐺 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] 𝑦 = [⟨𝑢, 𝑡⟩] ) ∧ 𝑧 = [(⟨𝑤, 𝑣+𝑢, 𝑡⟩)] ))}       Fun 𝐺

Theoremth3q 6538* Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 19-Dec-2013.)
∈ V    &    Er (𝑆 × 𝑆)    &   ((((𝑤𝑆𝑣𝑆) ∧ (𝑢𝑆𝑡𝑆)) ∧ ((𝑠𝑆𝑓𝑆) ∧ (𝑔𝑆𝑆))) → ((⟨𝑤, 𝑣𝑢, 𝑡⟩ ∧ ⟨𝑠, 𝑓𝑔, ⟩) → (⟨𝑤, 𝑣+𝑠, 𝑓⟩) (⟨𝑢, 𝑡+𝑔, ⟩)))    &   𝐺 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((𝑆 × 𝑆) / ) ∧ 𝑦 ∈ ((𝑆 × 𝑆) / )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] 𝑦 = [⟨𝑢, 𝑡⟩] ) ∧ 𝑧 = [(⟨𝑤, 𝑣+𝑢, 𝑡⟩)] ))}       (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ([⟨𝐴, 𝐵⟩] 𝐺[⟨𝐶, 𝐷⟩] ) = [(⟨𝐴, 𝐵+𝐶, 𝐷⟩)] )

Theoremoviec 6539* Express an operation on equivalence classes of ordered pairs in terms of equivalence class of operations on ordered pairs. See iset.mm for additional comments describing the hypotheses. (Unnecessary distinct variable restrictions were removed by David Abernethy, 4-Jun-2013.) (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 4-Jun-2013.)
(((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐻 ∈ (𝑆 × 𝑆))    &   (((𝑎𝑆𝑏𝑆) ∧ (𝑔𝑆𝑆)) → 𝐾 ∈ (𝑆 × 𝑆))    &   (((𝑐𝑆𝑑𝑆) ∧ (𝑡𝑆𝑠𝑆)) → 𝐿 ∈ (𝑆 × 𝑆))    &    ∈ V    &    Er (𝑆 × 𝑆)    &    = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ 𝜑))}    &   (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → (𝜑𝜓))    &   (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → (𝜑𝜒))    &    + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝐽))}    &   (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → 𝐽 = 𝐾)    &   (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → 𝐽 = 𝐿)    &   (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝐽 = 𝐻)    &    = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑄𝑦𝑄) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] 𝑦 = [⟨𝑐, 𝑑⟩] ) ∧ 𝑧 = [(⟨𝑎, 𝑏+𝑐, 𝑑⟩)] ))}    &   𝑄 = ((𝑆 × 𝑆) / )    &   ((((𝑎𝑆𝑏𝑆) ∧ (𝑐𝑆𝑑𝑆)) ∧ ((𝑔𝑆𝑆) ∧ (𝑡𝑆𝑠𝑆))) → ((𝜓𝜒) → 𝐾 𝐿))       (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ([⟨𝐴, 𝐵⟩] [⟨𝐶, 𝐷⟩] ) = [𝐻] )

Theoremecovcom 6540* Lemma used to transfer a commutative law via an equivalence relation. Most uses will want ecovicom 6541 instead. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
𝐶 = ((𝑆 × 𝑆) / )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐷, 𝐺⟩] )    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑥𝑆𝑦𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )    &   𝐷 = 𝐻    &   𝐺 = 𝐽       ((𝐴𝐶𝐵𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Theoremecovicom 6541* Lemma used to transfer a commutative law via an equivalence relation. (Contributed by Jim Kingdon, 15-Sep-2019.)
𝐶 = ((𝑆 × 𝑆) / )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐷, 𝐺⟩] )    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑥𝑆𝑦𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑥, 𝑦⟩] ) = [⟨𝐻, 𝐽⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → 𝐷 = 𝐻)    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → 𝐺 = 𝐽)       ((𝐴𝐶𝐵𝐶) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Theoremecovass 6542* Lemma used to transfer an associative law via an equivalence relation. In most cases ecoviass 6543 will be more useful. (Contributed by NM, 31-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
𝐷 = ((𝑆 × 𝑆) / )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐺, 𝐻⟩] )    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝑁, 𝑄⟩] )    &   (((𝐺𝑆𝐻𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝐺, 𝐻⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝐽, 𝐾⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑁𝑆𝑄𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑁, 𝑄⟩] ) = [⟨𝐿, 𝑀⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (𝐺𝑆𝐻𝑆))    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑁𝑆𝑄𝑆))    &   𝐽 = 𝐿    &   𝐾 = 𝑀       ((𝐴𝐷𝐵𝐷𝐶𝐷) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Theoremecoviass 6543* Lemma used to transfer an associative law via an equivalence relation. (Contributed by Jim Kingdon, 16-Sep-2019.)
𝐷 = ((𝑆 × 𝑆) / )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐺, 𝐻⟩] )    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝑁, 𝑄⟩] )    &   (((𝐺𝑆𝐻𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝐺, 𝐻⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝐽, 𝐾⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑁𝑆𝑄𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑁, 𝑄⟩] ) = [⟨𝐿, 𝑀⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (𝐺𝑆𝐻𝑆))    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑁𝑆𝑄𝑆))    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → 𝐽 = 𝐿)    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → 𝐾 = 𝑀)       ((𝐴𝐷𝐵𝐷𝐶𝐷) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Theoremecovdi 6544* Lemma used to transfer a distributive law via an equivalence relation. Most likely ecovidi 6545 will be more helpful. (Contributed by NM, 2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.)
𝐷 = ((𝑆 × 𝑆) / )    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝑀, 𝑁⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑀𝑆𝑁𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ) = [⟨𝐻, 𝐽⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) = [⟨𝑊, 𝑋⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] ) = [⟨𝑌, 𝑍⟩] )    &   (((𝑊𝑆𝑋𝑆) ∧ (𝑌𝑆𝑍𝑆)) → ([⟨𝑊, 𝑋⟩] + [⟨𝑌, 𝑍⟩] ) = [⟨𝐾, 𝐿⟩] )    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑀𝑆𝑁𝑆))    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (𝑊𝑆𝑋𝑆))    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑌𝑆𝑍𝑆))    &   𝐻 = 𝐾    &   𝐽 = 𝐿       ((𝐴𝐷𝐵𝐷𝐶𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))

Theoremecovidi 6545* Lemma used to transfer a distributive law via an equivalence relation. (Contributed by Jim Kingdon, 17-Sep-2019.)
𝐷 = ((𝑆 × 𝑆) / )    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝑀, 𝑁⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑀𝑆𝑁𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑀, 𝑁⟩] ) = [⟨𝐻, 𝐽⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑧, 𝑤⟩] ) = [⟨𝑊, 𝑋⟩] )    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] · [⟨𝑣, 𝑢⟩] ) = [⟨𝑌, 𝑍⟩] )    &   (((𝑊𝑆𝑋𝑆) ∧ (𝑌𝑆𝑍𝑆)) → ([⟨𝑊, 𝑋⟩] + [⟨𝑌, 𝑍⟩] ) = [⟨𝐾, 𝐿⟩] )    &   (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑀𝑆𝑁𝑆))    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (𝑊𝑆𝑋𝑆))    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑌𝑆𝑍𝑆))    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → 𝐻 = 𝐾)    &   (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → 𝐽 = 𝐿)       ((𝐴𝐷𝐵𝐷𝐶𝐷) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))

2.6.25  The mapping operation

Syntaxcmap 6546 Extend the definition of a class to include the mapping operation. (Read for 𝐴𝑚 𝐵, "the set of all functions that map from 𝐵 to 𝐴.)
class 𝑚

Syntaxcpm 6547 Extend the definition of a class to include the partial mapping operation. (Read for 𝐴pm 𝐵, "the set of all partial functions that map from 𝐵 to 𝐴.)
class pm

Definitiondf-map 6548* Define the mapping operation or set exponentiation. The set of all functions that map from 𝐵 to 𝐴 is written (𝐴𝑚 𝐵) (see mapval 6558). Many authors write 𝐴 followed by 𝐵 as a superscript for this operation and rely on context to avoid confusion other exponentiation operations (e.g., Definition 10.42 of [TakeutiZaring] p. 95). Other authors show 𝐵 as a prefixed superscript, which is read "𝐴 pre 𝐵 " (e.g., definition of [Enderton] p. 52). Definition 8.21 of [Eisenberg] p. 125 uses the notation Map(𝐵, 𝐴) for our (𝐴𝑚 𝐵). The up-arrow is used by Donald Knuth for iterated exponentiation (Science 194, 1235-1242, 1976). We adopt the first case of his notation (simple exponentiation) and subscript it with m to distinguish it from other kinds of exponentiation. (Contributed by NM, 8-Dec-2003.)
𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})

Definitiondf-pm 6549* Define the partial mapping operation. A partial function from 𝐵 to 𝐴 is a function from a subset of 𝐵 to 𝐴. The set of all partial functions from 𝐵 to 𝐴 is written (𝐴pm 𝐵) (see pmvalg 6557). A notation for this operation apparently does not appear in the literature. We use pm to distinguish it from the less general set exponentiation operation 𝑚 (df-map 6548) . See mapsspm 6580 for its relationship to set exponentiation. (Contributed by NM, 15-Nov-2007.)
pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓})

Theoremmapprc 6550* When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.)
𝐴 ∈ V → {𝑓𝑓:𝐴𝐵} = ∅)

Theorempmex 6551* The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.)
((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (Fun 𝑓𝑓 ⊆ (𝐴 × 𝐵))} ∈ V)

Theoremmapex 6552* The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.)
((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)

Theoremfnmap 6553 Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
𝑚 Fn (V × V)

Theoremfnpm 6554 Partial function exponentiation has a universal domain. (Contributed by Mario Carneiro, 14-Nov-2013.)
pm Fn (V × V)

Theoremreldmmap 6555 Set exponentiation is a well-behaved binary operator. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Rel dom ↑𝑚

Theoremmapvalg 6556* The value of set exponentiation. (𝐴𝑚 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
((𝐴𝐶𝐵𝐷) → (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴})

Theorempmvalg 6557* The value of the partial mapping operation. (𝐴pm 𝐵) is the set of all partial functions that map from 𝐵 to 𝐴. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.)
((𝐴𝐶𝐵𝐷) → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})

Theoremmapval 6558* The value of set exponentiation (inference version). (𝐴𝑚 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝑚 𝐵) = {𝑓𝑓:𝐵𝐴}

Theoremelmapg 6559 Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴𝑚 𝐵) ↔ 𝐶:𝐵𝐴))

Theoremelmapd 6560 Deduction form of elmapg 6559. (Contributed by BJ, 11-Apr-2020.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → (𝐶 ∈ (𝐴𝑚 𝐵) ↔ 𝐶:𝐵𝐴))

Theoremmapdm0 6561 The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.)
(𝐵𝑉 → (𝐵𝑚 ∅) = {∅})

Theoremelpmg 6562 The predicate "is a partial function." (Contributed by Mario Carneiro, 14-Nov-2013.)
((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ (Fun 𝐶𝐶 ⊆ (𝐵 × 𝐴))))

Theoremelpm2g 6563 The predicate "is a partial function." (Contributed by NM, 31-Dec-2013.)
((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))

Theoremelpm2r 6564 Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐹:𝐶𝐴𝐶𝐵)) → 𝐹 ∈ (𝐴pm 𝐵))

Theoremelpmi 6565 A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015.)
(𝐹 ∈ (𝐴pm 𝐵) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))

Theorempmfun 6566 A partial function is a function. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐹 ∈ (𝐴pm 𝐵) → Fun 𝐹)

Theoremelmapex 6567 Eliminate antecedent for mapping theorems: domain can be taken to be a set. (Contributed by Stefan O'Rear, 8-Oct-2014.)
(𝐴 ∈ (𝐵𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))

Theoremelmapi 6568 A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(𝐴 ∈ (𝐵𝑚 𝐶) → 𝐴:𝐶𝐵)

Theoremelmapfn 6569 A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.)
(𝐴 ∈ (𝐵𝑚 𝐶) → 𝐴 Fn 𝐶)

Theoremelmapfun 6570 A mapping is always a function. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
(𝐴 ∈ (𝐵𝑚 𝐶) → Fun 𝐴)

Theoremelmapssres 6571 A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
((𝐴 ∈ (𝐵𝑚 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷) ∈ (𝐵𝑚 𝐷))

Theoremfpmg 6572 A total function is a partial function. (Contributed by Mario Carneiro, 31-Dec-2013.)
((𝐴𝑉𝐵𝑊𝐹:𝐴𝐵) → 𝐹 ∈ (𝐵pm 𝐴))

Theorempmss12g 6573 Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
(((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝐴pm 𝐵) ⊆ (𝐶pm 𝐷))

Theorempmresg 6574 Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))

Theoremelmap 6575 Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐹 ∈ (𝐴𝑚 𝐵) ↔ 𝐹:𝐵𝐴)

Theoremmapval2 6576* Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝑚 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵})

Theoremelpm 6577 The predicate "is a partial function." (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐹 ∈ (𝐴pm 𝐵) ↔ (Fun 𝐹𝐹 ⊆ (𝐵 × 𝐴)))

Theoremelpm2 6578 The predicate "is a partial function." (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))

Theoremfpm 6579 A total function is a partial function. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐹:𝐴𝐵𝐹 ∈ (𝐵pm 𝐴))

Theoremmapsspm 6580 Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
(𝐴𝑚 𝐵) ⊆ (𝐴pm 𝐵)

Theorempmsspw 6581 Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝐴pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)

Theoremmapsspw 6582 Set exponentiation is a subset of the power set of the Cartesian product of its arguments. (Contributed by NM, 8-Dec-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴𝑚 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)

Theoremfvmptmap 6583* Special case of fvmpt 5502 for operator theorems. (Contributed by NM, 27-Nov-2007.)
𝐶 ∈ V    &   𝐷 ∈ V    &   𝑅 ∈ V    &   (𝑥 = 𝐴𝐵 = 𝐶)    &   𝐹 = (𝑥 ∈ (𝑅𝑚 𝐷) ↦ 𝐵)       (𝐴:𝐷𝑅 → (𝐹𝐴) = 𝐶)

Theoremmap0e 6584 Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.)
(𝐴𝑉 → (𝐴𝑚 ∅) = 1o)

Theoremmap0b 6585 Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴 ≠ ∅ → (∅ ↑𝑚 𝐴) = ∅)

Theoremmap0g 6586 Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.)
((𝐴𝑉𝐵𝑊) → ((𝐴𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))

Theoremmap0 6587 Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.)
𝐴 ∈ V    &   𝐵 ∈ V       ((𝐴𝑚 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))

Theoremmapsn 6588* The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴𝑚 {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}}

Theoremmapss 6589 Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐵𝑉𝐴𝐵) → (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))

Theoremfdiagfn 6590* Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))       ((𝐵𝑉𝐼𝑊) → 𝐹:𝐵⟶(𝐵𝑚 𝐼))

Theoremfvdiagfn 6591* Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))       ((𝐼𝑊𝑋𝐵) → (𝐹𝑋) = (𝐼 × {𝑋}))

Theoremmapsnconst 6592 Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.)
𝑆 = {𝑋}    &   𝐵 ∈ V    &   𝑋 ∈ V       (𝐹 ∈ (𝐵𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹𝑋)}))

Theoremmapsncnv 6593* Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
𝑆 = {𝑋}    &   𝐵 ∈ V    &   𝑋 ∈ V    &   𝐹 = (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋))       𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))

Theoremmapsnf1o2 6594* Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
𝑆 = {𝑋}    &   𝐵 ∈ V    &   𝑋 ∈ V    &   𝐹 = (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋))       𝐹:(𝐵𝑚 𝑆)–1-1-onto𝐵

Theoremmapsnf1o3 6595* Explicit bijection in the reverse of mapsnf1o2 6594. (Contributed by Stefan O'Rear, 24-Mar-2015.)
𝑆 = {𝑋}    &   𝐵 ∈ V    &   𝑋 ∈ V    &   𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))       𝐹:𝐵1-1-onto→(𝐵𝑚 𝑆)

2.6.26  Infinite Cartesian products

Syntaxcixp 6596 Extend class notation to include infinite Cartesian products.
class X𝑥𝐴 𝐵

Definitiondf-ixp 6597* Definition of infinite Cartesian product of [Enderton] p. 54. Enderton uses a bold "X" with 𝑥𝐴 written underneath or as a subscript, as does Stoll p. 47. Some books use a capital pi, but we will reserve that notation for products of numbers. Usually 𝐵 represents a class expression containing 𝑥 free and thus can be thought of as 𝐵(𝑥). Normally, 𝑥 is not free in 𝐴, although this is not a requirement of the definition. (Contributed by NM, 28-Sep-2006.)
X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}

Theoremdfixp 6598* Eliminate the expression {𝑥𝑥𝐴} in df-ixp 6597, under the assumption that 𝐴 and 𝑥 are disjoint. This way, we can say that 𝑥 is bound in X𝑥𝐴𝐵 even if it appears free in 𝐴. (Contributed by Mario Carneiro, 12-Aug-2016.)
X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}

Theoremixpsnval 6599* The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.)
(𝑋𝑉X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)})

Theoremelixp2 6600* Membership in an infinite Cartesian product. See df-ixp 6597 for discussion of the notation. (Contributed by NM, 28-Sep-2006.)
(𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13424
 Copyright terms: Public domain < Previous  Next >