HomeHome Intuitionistic Logic Explorer
Theorem List (p. 66 of 150)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 6501-6600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnntri2or2 6501 A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 15-Sep-2021.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰) โ†’ (๐ด โІ ๐ต โˆจ ๐ต โІ ๐ด))
 
Theoremnndceq 6502 Equality of natural numbers is decidable. Theorem 7.2.6 of [HoTT], p. (varies). For the specific case where ๐ต is zero, see nndceq0 4619. (Contributed by Jim Kingdon, 31-Aug-2019.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰) โ†’ DECID ๐ด = ๐ต)
 
Theoremnndcel 6503 Set membership between two natural numbers is decidable. (Contributed by Jim Kingdon, 6-Sep-2019.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰) โ†’ DECID ๐ด โˆˆ ๐ต)
 
Theoremnnsseleq 6504 For natural numbers, inclusion is equivalent to membership or equality. (Contributed by Jim Kingdon, 16-Sep-2021.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰) โ†’ (๐ด โІ ๐ต โ†” (๐ด โˆˆ ๐ต โˆจ ๐ด = ๐ต)))
 
Theoremnnsssuc 6505 A natural number is a subset of another natural number if and only if it belongs to its successor. (Contributed by Jim Kingdon, 22-Jul-2023.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰) โ†’ (๐ด โІ ๐ต โ†” ๐ด โˆˆ suc ๐ต))
 
Theoremnntr2 6506 Transitive law for natural numbers. (Contributed by Jim Kingdon, 22-Jul-2023.)
((๐ด โˆˆ ฯ‰ โˆง ๐ถ โˆˆ ฯ‰) โ†’ ((๐ด โІ ๐ต โˆง ๐ต โˆˆ ๐ถ) โ†’ ๐ด โˆˆ ๐ถ))
 
Theoremdcdifsnid 6507* If we remove a single element from a set with decidable equality then put it back in, we end up with the original set. This strengthens difsnss 3740 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 17-Jun-2022.)
((โˆ€๐‘ฅ โˆˆ ๐ด โˆ€๐‘ฆ โˆˆ ๐ด DECID ๐‘ฅ = ๐‘ฆ โˆง ๐ต โˆˆ ๐ด) โ†’ ((๐ด โˆ– {๐ต}) โˆช {๐ต}) = ๐ด)
 
Theoremfnsnsplitdc 6508* Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 29-Jan-2023.)
((โˆ€๐‘ฅ โˆˆ ๐ด โˆ€๐‘ฆ โˆˆ ๐ด DECID ๐‘ฅ = ๐‘ฆ โˆง ๐น Fn ๐ด โˆง ๐‘‹ โˆˆ ๐ด) โ†’ ๐น = ((๐น โ†พ (๐ด โˆ– {๐‘‹})) โˆช {โŸจ๐‘‹, (๐นโ€˜๐‘‹)โŸฉ}))
 
Theoremfunresdfunsndc 6509* Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself, where equality is decidable. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 30-Jan-2023.)
((โˆ€๐‘ฅ โˆˆ dom ๐นโˆ€๐‘ฆ โˆˆ dom ๐นDECID ๐‘ฅ = ๐‘ฆ โˆง Fun ๐น โˆง ๐‘‹ โˆˆ dom ๐น) โ†’ ((๐น โ†พ (V โˆ– {๐‘‹})) โˆช {โŸจ๐‘‹, (๐นโ€˜๐‘‹)โŸฉ}) = ๐น)
 
Theoremnndifsnid 6510 If we remove a single element from a natural number then put it back in, we end up with the original natural number. This strengthens difsnss 3740 from subset to equality but the proof relies on equality being decidable. (Contributed by Jim Kingdon, 31-Aug-2021.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ๐ด) โ†’ ((๐ด โˆ– {๐ต}) โˆช {๐ต}) = ๐ด)
 
Theoremnnaordi 6511 Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
((๐ต โˆˆ ฯ‰ โˆง ๐ถ โˆˆ ฯ‰) โ†’ (๐ด โˆˆ ๐ต โ†’ (๐ถ +o ๐ด) โˆˆ (๐ถ +o ๐ต)))
 
Theoremnnaord 6512 Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰ โˆง ๐ถ โˆˆ ฯ‰) โ†’ (๐ด โˆˆ ๐ต โ†” (๐ถ +o ๐ด) โˆˆ (๐ถ +o ๐ต)))
 
Theoremnnaordr 6513 Ordering property of addition of natural numbers. (Contributed by NM, 9-Nov-2002.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰ โˆง ๐ถ โˆˆ ฯ‰) โ†’ (๐ด โˆˆ ๐ต โ†” (๐ด +o ๐ถ) โˆˆ (๐ต +o ๐ถ)))
 
Theoremnnaword 6514 Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰ โˆง ๐ถ โˆˆ ฯ‰) โ†’ (๐ด โІ ๐ต โ†” (๐ถ +o ๐ด) โІ (๐ถ +o ๐ต)))
 
Theoremnnacan 6515 Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰ โˆง ๐ถ โˆˆ ฯ‰) โ†’ ((๐ด +o ๐ต) = (๐ด +o ๐ถ) โ†” ๐ต = ๐ถ))
 
Theoremnnaword1 6516 Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰) โ†’ ๐ด โІ (๐ด +o ๐ต))
 
Theoremnnaword2 6517 Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰) โ†’ ๐ด โІ (๐ต +o ๐ด))
 
Theoremnnawordi 6518 Adding to both sides of an inequality in ฯ‰. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 12-May-2012.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰ โˆง ๐ถ โˆˆ ฯ‰) โ†’ (๐ด โІ ๐ต โ†’ (๐ด +o ๐ถ) โІ (๐ต +o ๐ถ)))
 
Theoremnnmordi 6519 Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
(((๐ต โˆˆ ฯ‰ โˆง ๐ถ โˆˆ ฯ‰) โˆง โˆ… โˆˆ ๐ถ) โ†’ (๐ด โˆˆ ๐ต โ†’ (๐ถ ยทo ๐ด) โˆˆ (๐ถ ยทo ๐ต)))
 
Theoremnnmord 6520 Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰ โˆง ๐ถ โˆˆ ฯ‰) โ†’ ((๐ด โˆˆ ๐ต โˆง โˆ… โˆˆ ๐ถ) โ†” (๐ถ ยทo ๐ด) โˆˆ (๐ถ ยทo ๐ต)))
 
Theoremnnmword 6521 Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
(((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰ โˆง ๐ถ โˆˆ ฯ‰) โˆง โˆ… โˆˆ ๐ถ) โ†’ (๐ด โІ ๐ต โ†” (๐ถ ยทo ๐ด) โІ (๐ถ ยทo ๐ต)))
 
Theoremnnmcan 6522 Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
(((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰ โˆง ๐ถ โˆˆ ฯ‰) โˆง โˆ… โˆˆ ๐ด) โ†’ ((๐ด ยทo ๐ต) = (๐ด ยทo ๐ถ) โ†” ๐ต = ๐ถ))
 
Theorem1onn 6523 One is a natural number. (Contributed by NM, 29-Oct-1995.)
1o โˆˆ ฯ‰
 
Theorem2onn 6524 The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.)
2o โˆˆ ฯ‰
 
Theorem3onn 6525 The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
3o โˆˆ ฯ‰
 
Theorem4onn 6526 The ordinal 4 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
4o โˆˆ ฯ‰
 
Theorem2ssom 6527 The ordinal 2 is included in the set of natural number ordinals. (Contributed by BJ, 5-Aug-2024.)
2o โІ ฯ‰
 
Theoremnnm1 6528 Multiply an element of ฯ‰ by 1o. (Contributed by Mario Carneiro, 17-Nov-2014.)
(๐ด โˆˆ ฯ‰ โ†’ (๐ด ยทo 1o) = ๐ด)
 
Theoremnnm2 6529 Multiply an element of ฯ‰ by 2o. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
(๐ด โˆˆ ฯ‰ โ†’ (๐ด ยทo 2o) = (๐ด +o ๐ด))
 
Theoremnn2m 6530 Multiply an element of ฯ‰ by 2o. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
(๐ด โˆˆ ฯ‰ โ†’ (2o ยทo ๐ด) = (๐ด +o ๐ด))
 
Theoremnnaordex 6531* Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰) โ†’ (๐ด โˆˆ ๐ต โ†” โˆƒ๐‘ฅ โˆˆ ฯ‰ (โˆ… โˆˆ ๐‘ฅ โˆง (๐ด +o ๐‘ฅ) = ๐ต)))
 
Theoremnnawordex 6532* Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰) โ†’ (๐ด โІ ๐ต โ†” โˆƒ๐‘ฅ โˆˆ ฯ‰ (๐ด +o ๐‘ฅ) = ๐ต))
 
Theoremnnm00 6533 The product of two natural numbers is zero iff at least one of them is zero. (Contributed by Jim Kingdon, 11-Nov-2004.)
((๐ด โˆˆ ฯ‰ โˆง ๐ต โˆˆ ฯ‰) โ†’ ((๐ด ยทo ๐ต) = โˆ… โ†” (๐ด = โˆ… โˆจ ๐ต = โˆ…)))
 
2.6.25  Equivalence relations and classes
 
Syntaxwer 6534 Extend the definition of a wff to include the equivalence predicate.
wff ๐‘… Er ๐ด
 
Syntaxcec 6535 Extend the definition of a class to include equivalence class.
class [๐ด]๐‘…
 
Syntaxcqs 6536 Extend the definition of a class to include quotient set.
class (๐ด / ๐‘…)
 
Definitiondf-er 6537 Define the equivalence relation predicate. Our notation is not standard. A formal notation doesn't seem to exist in the literature; instead only informal English tends to be used. The present definition, although somewhat cryptic, nicely avoids dummy variables. In dfer2 6538 we derive a more typical definition. We show that an equivalence relation is reflexive, symmetric, and transitive in erref 6557, ersymb 6551, and ertr 6552. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 2-Nov-2015.)
(๐‘… Er ๐ด โ†” (Rel ๐‘… โˆง dom ๐‘… = ๐ด โˆง (โ—ก๐‘… โˆช (๐‘… โˆ˜ ๐‘…)) โІ ๐‘…))
 
Theoremdfer2 6538* Alternate definition of equivalence predicate. (Contributed by NM, 3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.)
(๐‘… Er ๐ด โ†” (Rel ๐‘… โˆง dom ๐‘… = ๐ด โˆง โˆ€๐‘ฅโˆ€๐‘ฆโˆ€๐‘ง((๐‘ฅ๐‘…๐‘ฆ โ†’ ๐‘ฆ๐‘…๐‘ฅ) โˆง ((๐‘ฅ๐‘…๐‘ฆ โˆง ๐‘ฆ๐‘…๐‘ง) โ†’ ๐‘ฅ๐‘…๐‘ง))))
 
Definitiondf-ec 6539 Define the ๐‘…-coset of ๐ด. Exercise 35 of [Enderton] p. 61. This is called the equivalence class of ๐ด modulo ๐‘… when ๐‘… is an equivalence relation (i.e. when Er ๐‘…; see dfer2 6538). In this case, ๐ด is a representative (member) of the equivalence class [๐ด]๐‘…, which contains all sets that are equivalent to ๐ด. Definition of [Enderton] p. 57 uses the notation [๐ด] (subscript) ๐‘…, although we simply follow the brackets by ๐‘… since we don't have subscripted expressions. For an alternate definition, see dfec2 6540. (Contributed by NM, 23-Jul-1995.)
[๐ด]๐‘… = (๐‘… โ€œ {๐ด})
 
Theoremdfec2 6540* Alternate definition of ๐‘…-coset of ๐ด. Definition 34 of [Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
(๐ด โˆˆ ๐‘‰ โ†’ [๐ด]๐‘… = {๐‘ฆ โˆฃ ๐ด๐‘…๐‘ฆ})
 
Theoremecexg 6541 An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.)
(๐‘… โˆˆ ๐ต โ†’ [๐ด]๐‘… โˆˆ V)
 
Theoremecexr 6542 An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
(๐ด โˆˆ [๐ต]๐‘… โ†’ ๐ต โˆˆ V)
 
Definitiondf-qs 6543* Define quotient set. ๐‘… is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
(๐ด / ๐‘…) = {๐‘ฆ โˆฃ โˆƒ๐‘ฅ โˆˆ ๐ด ๐‘ฆ = [๐‘ฅ]๐‘…}
 
Theoremereq1 6544 Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(๐‘… = ๐‘† โ†’ (๐‘… Er ๐ด โ†” ๐‘† Er ๐ด))
 
Theoremereq2 6545 Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.)
(๐ด = ๐ต โ†’ (๐‘… Er ๐ด โ†” ๐‘… Er ๐ต))
 
Theoremerrel 6546 An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
(๐‘… Er ๐ด โ†’ Rel ๐‘…)
 
Theoremerdm 6547 The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
(๐‘… Er ๐ด โ†’ dom ๐‘… = ๐ด)
 
Theoremercl 6548 Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
(๐œ‘ โ†’ ๐‘… Er ๐‘‹)    &   (๐œ‘ โ†’ ๐ด๐‘…๐ต)    โ‡’   (๐œ‘ โ†’ ๐ด โˆˆ ๐‘‹)
 
Theoremersym 6549 An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(๐œ‘ โ†’ ๐‘… Er ๐‘‹)    &   (๐œ‘ โ†’ ๐ด๐‘…๐ต)    โ‡’   (๐œ‘ โ†’ ๐ต๐‘…๐ด)
 
Theoremercl2 6550 Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
(๐œ‘ โ†’ ๐‘… Er ๐‘‹)    &   (๐œ‘ โ†’ ๐ด๐‘…๐ต)    โ‡’   (๐œ‘ โ†’ ๐ต โˆˆ ๐‘‹)
 
Theoremersymb 6551 An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(๐œ‘ โ†’ ๐‘… Er ๐‘‹)    โ‡’   (๐œ‘ โ†’ (๐ด๐‘…๐ต โ†” ๐ต๐‘…๐ด))
 
Theoremertr 6552 An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(๐œ‘ โ†’ ๐‘… Er ๐‘‹)    โ‡’   (๐œ‘ โ†’ ((๐ด๐‘…๐ต โˆง ๐ต๐‘…๐ถ) โ†’ ๐ด๐‘…๐ถ))
 
Theoremertrd 6553 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
(๐œ‘ โ†’ ๐‘… Er ๐‘‹)    &   (๐œ‘ โ†’ ๐ด๐‘…๐ต)    &   (๐œ‘ โ†’ ๐ต๐‘…๐ถ)    โ‡’   (๐œ‘ โ†’ ๐ด๐‘…๐ถ)
 
Theoremertr2d 6554 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
(๐œ‘ โ†’ ๐‘… Er ๐‘‹)    &   (๐œ‘ โ†’ ๐ด๐‘…๐ต)    &   (๐œ‘ โ†’ ๐ต๐‘…๐ถ)    โ‡’   (๐œ‘ โ†’ ๐ถ๐‘…๐ด)
 
Theoremertr3d 6555 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
(๐œ‘ โ†’ ๐‘… Er ๐‘‹)    &   (๐œ‘ โ†’ ๐ต๐‘…๐ด)    &   (๐œ‘ โ†’ ๐ต๐‘…๐ถ)    โ‡’   (๐œ‘ โ†’ ๐ด๐‘…๐ถ)
 
Theoremertr4d 6556 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
(๐œ‘ โ†’ ๐‘… Er ๐‘‹)    &   (๐œ‘ โ†’ ๐ด๐‘…๐ต)    &   (๐œ‘ โ†’ ๐ถ๐‘…๐ต)    โ‡’   (๐œ‘ โ†’ ๐ด๐‘…๐ถ)
 
Theoremerref 6557 An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
(๐œ‘ โ†’ ๐‘… Er ๐‘‹)    &   (๐œ‘ โ†’ ๐ด โˆˆ ๐‘‹)    โ‡’   (๐œ‘ โ†’ ๐ด๐‘…๐ด)
 
Theoremercnv 6558 The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.)
(๐‘… Er ๐ด โ†’ โ—ก๐‘… = ๐‘…)
 
Theoremerrn 6559 The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
(๐‘… Er ๐ด โ†’ ran ๐‘… = ๐ด)
 
Theoremerssxp 6560 An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.)
(๐‘… Er ๐ด โ†’ ๐‘… โІ (๐ด ร— ๐ด))
 
Theoremerex 6561 An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
(๐‘… Er ๐ด โ†’ (๐ด โˆˆ ๐‘‰ โ†’ ๐‘… โˆˆ V))
 
Theoremerexb 6562 An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
(๐‘… Er ๐ด โ†’ (๐‘… โˆˆ V โ†” ๐ด โˆˆ V))
 
Theoremiserd 6563* A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
(๐œ‘ โ†’ Rel ๐‘…)    &   ((๐œ‘ โˆง ๐‘ฅ๐‘…๐‘ฆ) โ†’ ๐‘ฆ๐‘…๐‘ฅ)    &   ((๐œ‘ โˆง (๐‘ฅ๐‘…๐‘ฆ โˆง ๐‘ฆ๐‘…๐‘ง)) โ†’ ๐‘ฅ๐‘…๐‘ง)    &   (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†” ๐‘ฅ๐‘…๐‘ฅ))    โ‡’   (๐œ‘ โ†’ ๐‘… Er ๐ด)
 
Theorembrdifun 6564 Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.)
๐‘… = ((๐‘‹ ร— ๐‘‹) โˆ– ( < โˆช โ—ก < ))    โ‡’   ((๐ด โˆˆ ๐‘‹ โˆง ๐ต โˆˆ ๐‘‹) โ†’ (๐ด๐‘…๐ต โ†” ยฌ (๐ด < ๐ต โˆจ ๐ต < ๐ด)))
 
Theoremswoer 6565* Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
๐‘… = ((๐‘‹ ร— ๐‘‹) โˆ– ( < โˆช โ—ก < ))    &   ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘‹ โˆง ๐‘ง โˆˆ ๐‘‹)) โ†’ (๐‘ฆ < ๐‘ง โ†’ ยฌ ๐‘ง < ๐‘ฆ))    &   ((๐œ‘ โˆง (๐‘ฅ โˆˆ ๐‘‹ โˆง ๐‘ฆ โˆˆ ๐‘‹ โˆง ๐‘ง โˆˆ ๐‘‹)) โ†’ (๐‘ฅ < ๐‘ฆ โ†’ (๐‘ฅ < ๐‘ง โˆจ ๐‘ง < ๐‘ฆ)))    โ‡’   (๐œ‘ โ†’ ๐‘… Er ๐‘‹)
 
Theoremswoord1 6566* The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
๐‘… = ((๐‘‹ ร— ๐‘‹) โˆ– ( < โˆช โ—ก < ))    &   ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘‹ โˆง ๐‘ง โˆˆ ๐‘‹)) โ†’ (๐‘ฆ < ๐‘ง โ†’ ยฌ ๐‘ง < ๐‘ฆ))    &   ((๐œ‘ โˆง (๐‘ฅ โˆˆ ๐‘‹ โˆง ๐‘ฆ โˆˆ ๐‘‹ โˆง ๐‘ง โˆˆ ๐‘‹)) โ†’ (๐‘ฅ < ๐‘ฆ โ†’ (๐‘ฅ < ๐‘ง โˆจ ๐‘ง < ๐‘ฆ)))    &   (๐œ‘ โ†’ ๐ต โˆˆ ๐‘‹)    &   (๐œ‘ โ†’ ๐ถ โˆˆ ๐‘‹)    &   (๐œ‘ โ†’ ๐ด๐‘…๐ต)    โ‡’   (๐œ‘ โ†’ (๐ด < ๐ถ โ†” ๐ต < ๐ถ))
 
Theoremswoord2 6567* The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
๐‘… = ((๐‘‹ ร— ๐‘‹) โˆ– ( < โˆช โ—ก < ))    &   ((๐œ‘ โˆง (๐‘ฆ โˆˆ ๐‘‹ โˆง ๐‘ง โˆˆ ๐‘‹)) โ†’ (๐‘ฆ < ๐‘ง โ†’ ยฌ ๐‘ง < ๐‘ฆ))    &   ((๐œ‘ โˆง (๐‘ฅ โˆˆ ๐‘‹ โˆง ๐‘ฆ โˆˆ ๐‘‹ โˆง ๐‘ง โˆˆ ๐‘‹)) โ†’ (๐‘ฅ < ๐‘ฆ โ†’ (๐‘ฅ < ๐‘ง โˆจ ๐‘ง < ๐‘ฆ)))    &   (๐œ‘ โ†’ ๐ต โˆˆ ๐‘‹)    &   (๐œ‘ โ†’ ๐ถ โˆˆ ๐‘‹)    &   (๐œ‘ โ†’ ๐ด๐‘…๐ต)    โ‡’   (๐œ‘ โ†’ (๐ถ < ๐ด โ†” ๐ถ < ๐ต))
 
Theoremeqerlem 6568* Lemma for eqer 6569. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
(๐‘ฅ = ๐‘ฆ โ†’ ๐ด = ๐ต)    &   ๐‘… = {โŸจ๐‘ฅ, ๐‘ฆโŸฉ โˆฃ ๐ด = ๐ต}    โ‡’   (๐‘ง๐‘…๐‘ค โ†” โฆ‹๐‘ง / ๐‘ฅโฆŒ๐ด = โฆ‹๐‘ค / ๐‘ฅโฆŒ๐ด)
 
Theoremeqer 6569* Equivalence relation involving equality of dependent classes ๐ด(๐‘ฅ) and ๐ต(๐‘ฆ). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.)
(๐‘ฅ = ๐‘ฆ โ†’ ๐ด = ๐ต)    &   ๐‘… = {โŸจ๐‘ฅ, ๐‘ฆโŸฉ โˆฃ ๐ด = ๐ต}    โ‡’   ๐‘… Er V
 
Theoremider 6570 The identity relation is an equivalence relation. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
I Er V
 
Theorem0er 6571 The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.)
โˆ… Er โˆ…
 
Theoremeceq1 6572 Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
(๐ด = ๐ต โ†’ [๐ด]๐ถ = [๐ต]๐ถ)
 
Theoremeceq1d 6573 Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.)
(๐œ‘ โ†’ ๐ด = ๐ต)    โ‡’   (๐œ‘ โ†’ [๐ด]๐ถ = [๐ต]๐ถ)
 
Theoremeceq2 6574 Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
(๐ด = ๐ต โ†’ [๐ถ]๐ด = [๐ถ]๐ต)
 
Theoremelecg 6575 Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.)
((๐ด โˆˆ ๐‘‰ โˆง ๐ต โˆˆ ๐‘Š) โ†’ (๐ด โˆˆ [๐ต]๐‘… โ†” ๐ต๐‘…๐ด))
 
Theoremelec 6576 Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.)
๐ด โˆˆ V    &   ๐ต โˆˆ V    โ‡’   (๐ด โˆˆ [๐ต]๐‘… โ†” ๐ต๐‘…๐ด)
 
Theoremrelelec 6577 Membership in an equivalence class when ๐‘… is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.)
(Rel ๐‘… โ†’ (๐ด โˆˆ [๐ต]๐‘… โ†” ๐ต๐‘…๐ด))
 
Theoremecss 6578 An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
(๐œ‘ โ†’ ๐‘… Er ๐‘‹)    โ‡’   (๐œ‘ โ†’ [๐ด]๐‘… โІ ๐‘‹)
 
Theoremecdmn0m 6579* A representative of an inhabited equivalence class belongs to the domain of the equivalence relation. (Contributed by Jim Kingdon, 21-Aug-2019.)
(๐ด โˆˆ dom ๐‘… โ†” โˆƒ๐‘ฅ ๐‘ฅ โˆˆ [๐ด]๐‘…)
 
Theoremereldm 6580 Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
(๐œ‘ โ†’ ๐‘… Er ๐‘‹)    &   (๐œ‘ โ†’ [๐ด]๐‘… = [๐ต]๐‘…)    โ‡’   (๐œ‘ โ†’ (๐ด โˆˆ ๐‘‹ โ†” ๐ต โˆˆ ๐‘‹))
 
Theoremerth 6581 Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
(๐œ‘ โ†’ ๐‘… Er ๐‘‹)    &   (๐œ‘ โ†’ ๐ด โˆˆ ๐‘‹)    โ‡’   (๐œ‘ โ†’ (๐ด๐‘…๐ต โ†” [๐ด]๐‘… = [๐ต]๐‘…))
 
Theoremerth2 6582 Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
(๐œ‘ โ†’ ๐‘… Er ๐‘‹)    &   (๐œ‘ โ†’ ๐ต โˆˆ ๐‘‹)    โ‡’   (๐œ‘ โ†’ (๐ด๐‘…๐ต โ†” [๐ด]๐‘… = [๐ต]๐‘…))
 
Theoremerthi 6583 Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
(๐œ‘ โ†’ ๐‘… Er ๐‘‹)    &   (๐œ‘ โ†’ ๐ด๐‘…๐ต)    โ‡’   (๐œ‘ โ†’ [๐ด]๐‘… = [๐ต]๐‘…)
 
Theoremecidsn 6584 An equivalence class modulo the identity relation is a singleton. (Contributed by NM, 24-Oct-2004.)
[๐ด] I = {๐ด}
 
Theoremqseq1 6585 Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
(๐ด = ๐ต โ†’ (๐ด / ๐ถ) = (๐ต / ๐ถ))
 
Theoremqseq2 6586 Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
(๐ด = ๐ต โ†’ (๐ถ / ๐ด) = (๐ถ / ๐ต))
 
Theoremelqsg 6587* Closed form of elqs 6588. (Contributed by Rodolfo Medina, 12-Oct-2010.)
(๐ต โˆˆ ๐‘‰ โ†’ (๐ต โˆˆ (๐ด / ๐‘…) โ†” โˆƒ๐‘ฅ โˆˆ ๐ด ๐ต = [๐‘ฅ]๐‘…))
 
Theoremelqs 6588* Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
๐ต โˆˆ V    โ‡’   (๐ต โˆˆ (๐ด / ๐‘…) โ†” โˆƒ๐‘ฅ โˆˆ ๐ด ๐ต = [๐‘ฅ]๐‘…)
 
Theoremelqsi 6589* Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
(๐ต โˆˆ (๐ด / ๐‘…) โ†’ โˆƒ๐‘ฅ โˆˆ ๐ด ๐ต = [๐‘ฅ]๐‘…)
 
Theoremecelqsg 6590 Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
((๐‘… โˆˆ ๐‘‰ โˆง ๐ต โˆˆ ๐ด) โ†’ [๐ต]๐‘… โˆˆ (๐ด / ๐‘…))
 
Theoremecelqsi 6591 Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
๐‘… โˆˆ V    โ‡’   (๐ต โˆˆ ๐ด โ†’ [๐ต]๐‘… โˆˆ (๐ด / ๐‘…))
 
Theoremecopqsi 6592 "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996.)
๐‘… โˆˆ V    &   ๐‘† = ((๐ด ร— ๐ด) / ๐‘…)    โ‡’   ((๐ต โˆˆ ๐ด โˆง ๐ถ โˆˆ ๐ด) โ†’ [โŸจ๐ต, ๐ถโŸฉ]๐‘… โˆˆ ๐‘†)
 
Theoremqsexg 6593 A quotient set exists. (Contributed by FL, 19-May-2007.) (Revised by Mario Carneiro, 9-Jul-2014.)
(๐ด โˆˆ ๐‘‰ โ†’ (๐ด / ๐‘…) โˆˆ V)
 
Theoremqsex 6594 A quotient set exists. (Contributed by NM, 14-Aug-1995.)
๐ด โˆˆ V    โ‡’   (๐ด / ๐‘…) โˆˆ V
 
Theoremuniqs 6595 The union of a quotient set. (Contributed by NM, 9-Dec-2008.)
(๐‘… โˆˆ ๐‘‰ โ†’ โˆช (๐ด / ๐‘…) = (๐‘… โ€œ ๐ด))
 
Theoremqsss 6596 A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
(๐œ‘ โ†’ ๐‘… Er ๐ด)    โ‡’   (๐œ‘ โ†’ (๐ด / ๐‘…) โІ ๐’ซ ๐ด)
 
Theoremuniqs2 6597 The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
(๐œ‘ โ†’ ๐‘… Er ๐ด)    &   (๐œ‘ โ†’ ๐‘… โˆˆ ๐‘‰)    โ‡’   (๐œ‘ โ†’ โˆช (๐ด / ๐‘…) = ๐ด)
 
Theoremsnec 6598 The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
๐ด โˆˆ V    โ‡’   {[๐ด]๐‘…} = ({๐ด} / ๐‘…)
 
Theoremecqs 6599 Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.)
๐‘… โˆˆ V    โ‡’   [๐ด]๐‘… = โˆช ({๐ด} / ๐‘…)
 
Theoremecid 6600 A set is equal to its converse epsilon coset. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
๐ด โˆˆ V    โ‡’   [๐ด]โ—ก E = ๐ด
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-14917
  Copyright terms: Public domain < Previous  Next >