| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ersym | GIF version | ||
| Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| ersym.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) | 
| ersym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) | 
| Ref | Expression | 
|---|---|
| ersym | ⊢ (𝜑 → 𝐵𝑅𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ersym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | ersym.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 3 | errel 6601 | . . . . . 6 ⊢ (𝑅 Er 𝑋 → Rel 𝑅) | |
| 4 | 2, 3 | syl 14 | . . . . 5 ⊢ (𝜑 → Rel 𝑅) | 
| 5 | brrelex12 4701 | . . . . 5 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 6 | 4, 1, 5 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | 
| 7 | brcnvg 4847 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | |
| 8 | 7 | ancoms 268 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | 
| 9 | 6, 8 | syl 14 | . . 3 ⊢ (𝜑 → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | 
| 10 | 1, 9 | mpbird 167 | . 2 ⊢ (𝜑 → 𝐵◡𝑅𝐴) | 
| 11 | df-er 6592 | . . . . . 6 ⊢ (𝑅 Er 𝑋 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 12 | 11 | simp3bi 1016 | . . . . 5 ⊢ (𝑅 Er 𝑋 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) | 
| 13 | 2, 12 | syl 14 | . . . 4 ⊢ (𝜑 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) | 
| 14 | 13 | unssad 3340 | . . 3 ⊢ (𝜑 → ◡𝑅 ⊆ 𝑅) | 
| 15 | 14 | ssbrd 4076 | . 2 ⊢ (𝜑 → (𝐵◡𝑅𝐴 → 𝐵𝑅𝐴)) | 
| 16 | 10, 15 | mpd 13 | 1 ⊢ (𝜑 → 𝐵𝑅𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 ⊆ wss 3157 class class class wbr 4033 ◡ccnv 4662 dom cdm 4663 ∘ ccom 4667 Rel wrel 4668 Er wer 6589 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-er 6592 | 
| This theorem is referenced by: ercl2 6605 ersymb 6606 ertr2d 6609 ertr3d 6610 ertr4d 6611 erth 6638 erinxp 6668 qusgrp2 13243 2idlcpblrng 14079 | 
| Copyright terms: Public domain | W3C validator |