| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ersym | GIF version | ||
| Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ersym.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| ersym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Ref | Expression |
|---|---|
| ersym | ⊢ (𝜑 → 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | ersym.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 3 | errel 6619 | . . . . . 6 ⊢ (𝑅 Er 𝑋 → Rel 𝑅) | |
| 4 | 2, 3 | syl 14 | . . . . 5 ⊢ (𝜑 → Rel 𝑅) |
| 5 | brrelex12 4711 | . . . . 5 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
| 6 | 4, 1, 5 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 7 | brcnvg 4857 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) | |
| 8 | 7 | ancoms 268 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) |
| 9 | 6, 8 | syl 14 | . . 3 ⊢ (𝜑 → (𝐵◡𝑅𝐴 ↔ 𝐴𝑅𝐵)) |
| 10 | 1, 9 | mpbird 167 | . 2 ⊢ (𝜑 → 𝐵◡𝑅𝐴) |
| 11 | df-er 6610 | . . . . . 6 ⊢ (𝑅 Er 𝑋 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 12 | 11 | simp3bi 1016 | . . . . 5 ⊢ (𝑅 Er 𝑋 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) |
| 13 | 2, 12 | syl 14 | . . . 4 ⊢ (𝜑 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) |
| 14 | 13 | unssad 3349 | . . 3 ⊢ (𝜑 → ◡𝑅 ⊆ 𝑅) |
| 15 | 14 | ssbrd 4086 | . 2 ⊢ (𝜑 → (𝐵◡𝑅𝐴 → 𝐵𝑅𝐴)) |
| 16 | 10, 15 | mpd 13 | 1 ⊢ (𝜑 → 𝐵𝑅𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∪ cun 3163 ⊆ wss 3165 class class class wbr 4043 ◡ccnv 4672 dom cdm 4673 ∘ ccom 4677 Rel wrel 4678 Er wer 6607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4679 df-rel 4680 df-cnv 4681 df-er 6610 |
| This theorem is referenced by: ercl2 6623 ersymb 6624 ertr2d 6627 ertr3d 6628 ertr4d 6629 erth 6656 erinxp 6686 qusgrp2 13367 2idlcpblrng 14203 |
| Copyright terms: Public domain | W3C validator |