ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ersym GIF version

Theorem ersym 6601
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1 (𝜑𝑅 Er 𝑋)
ersym.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
ersym (𝜑𝐵𝑅𝐴)

Proof of Theorem ersym
StepHypRef Expression
1 ersym.2 . . 3 (𝜑𝐴𝑅𝐵)
2 ersym.1 . . . . . 6 (𝜑𝑅 Er 𝑋)
3 errel 6598 . . . . . 6 (𝑅 Er 𝑋 → Rel 𝑅)
42, 3syl 14 . . . . 5 (𝜑 → Rel 𝑅)
5 brrelex12 4698 . . . . 5 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
64, 1, 5syl2anc 411 . . . 4 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
7 brcnvg 4844 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵𝑅𝐴𝐴𝑅𝐵))
87ancoms 268 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵𝑅𝐴𝐴𝑅𝐵))
96, 8syl 14 . . 3 (𝜑 → (𝐵𝑅𝐴𝐴𝑅𝐵))
101, 9mpbird 167 . 2 (𝜑𝐵𝑅𝐴)
11 df-er 6589 . . . . . 6 (𝑅 Er 𝑋 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
1211simp3bi 1016 . . . . 5 (𝑅 Er 𝑋 → (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
132, 12syl 14 . . . 4 (𝜑 → (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
1413unssad 3337 . . 3 (𝜑𝑅𝑅)
1514ssbrd 4073 . 2 (𝜑 → (𝐵𝑅𝐴𝐵𝑅𝐴))
1610, 15mpd 13 1 (𝜑𝐵𝑅𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  cun 3152  wss 3154   class class class wbr 4030  ccnv 4659  dom cdm 4660  ccom 4664  Rel wrel 4665   Er wer 6586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-er 6589
This theorem is referenced by:  ercl2  6602  ersymb  6603  ertr2d  6606  ertr3d  6607  ertr4d  6608  erth  6635  erinxp  6665  qusgrp2  13186  2idlcpblrng  14022
  Copyright terms: Public domain W3C validator