ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ersym GIF version

Theorem ersym 6613
Description: An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1 (𝜑𝑅 Er 𝑋)
ersym.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
ersym (𝜑𝐵𝑅𝐴)

Proof of Theorem ersym
StepHypRef Expression
1 ersym.2 . . 3 (𝜑𝐴𝑅𝐵)
2 ersym.1 . . . . . 6 (𝜑𝑅 Er 𝑋)
3 errel 6610 . . . . . 6 (𝑅 Er 𝑋 → Rel 𝑅)
42, 3syl 14 . . . . 5 (𝜑 → Rel 𝑅)
5 brrelex12 4702 . . . . 5 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
64, 1, 5syl2anc 411 . . . 4 (𝜑 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
7 brcnvg 4848 . . . . 5 ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐵𝑅𝐴𝐴𝑅𝐵))
87ancoms 268 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵𝑅𝐴𝐴𝑅𝐵))
96, 8syl 14 . . 3 (𝜑 → (𝐵𝑅𝐴𝐴𝑅𝐵))
101, 9mpbird 167 . 2 (𝜑𝐵𝑅𝐴)
11 df-er 6601 . . . . . 6 (𝑅 Er 𝑋 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
1211simp3bi 1016 . . . . 5 (𝑅 Er 𝑋 → (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
132, 12syl 14 . . . 4 (𝜑 → (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
1413unssad 3341 . . 3 (𝜑𝑅𝑅)
1514ssbrd 4077 . 2 (𝜑 → (𝐵𝑅𝐴𝐵𝑅𝐴))
1610, 15mpd 13 1 (𝜑𝐵𝑅𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  wss 3157   class class class wbr 4034  ccnv 4663  dom cdm 4664  ccom 4668  Rel wrel 4669   Er wer 6598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-er 6601
This theorem is referenced by:  ercl2  6614  ersymb  6615  ertr2d  6618  ertr3d  6619  ertr4d  6620  erth  6647  erinxp  6677  qusgrp2  13319  2idlcpblrng  14155
  Copyright terms: Public domain W3C validator