| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ereq1 | GIF version | ||
| Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ereq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Er 𝐴 ↔ 𝑆 Er 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releq 4755 | . . 3 ⊢ (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆)) | |
| 2 | dmeq 4876 | . . . 4 ⊢ (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆) | |
| 3 | 2 | eqeq1d 2213 | . . 3 ⊢ (𝑅 = 𝑆 → (dom 𝑅 = 𝐴 ↔ dom 𝑆 = 𝐴)) |
| 4 | cnveq 4850 | . . . . . 6 ⊢ (𝑅 = 𝑆 → ◡𝑅 = ◡𝑆) | |
| 5 | coeq1 4833 | . . . . . . 7 ⊢ (𝑅 = 𝑆 → (𝑅 ∘ 𝑅) = (𝑆 ∘ 𝑅)) | |
| 6 | coeq2 4834 | . . . . . . 7 ⊢ (𝑅 = 𝑆 → (𝑆 ∘ 𝑅) = (𝑆 ∘ 𝑆)) | |
| 7 | 5, 6 | eqtrd 2237 | . . . . . 6 ⊢ (𝑅 = 𝑆 → (𝑅 ∘ 𝑅) = (𝑆 ∘ 𝑆)) |
| 8 | 4, 7 | uneq12d 3327 | . . . . 5 ⊢ (𝑅 = 𝑆 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) = (◡𝑆 ∪ (𝑆 ∘ 𝑆))) |
| 9 | 8 | sseq1d 3221 | . . . 4 ⊢ (𝑅 = 𝑆 → ((◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅 ↔ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑅)) |
| 10 | sseq2 3216 | . . . 4 ⊢ (𝑅 = 𝑆 → ((◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑅 ↔ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑆)) | |
| 11 | 9, 10 | bitrd 188 | . . 3 ⊢ (𝑅 = 𝑆 → ((◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅 ↔ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑆)) |
| 12 | 1, 3, 11 | 3anbi123d 1324 | . 2 ⊢ (𝑅 = 𝑆 → ((Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) ↔ (Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑆))) |
| 13 | df-er 6610 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 14 | df-er 6610 | . 2 ⊢ (𝑆 Er 𝐴 ↔ (Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑆)) | |
| 15 | 12, 13, 14 | 3bitr4g 223 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Er 𝐴 ↔ 𝑆 Er 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∪ cun 3163 ⊆ wss 3165 ◡ccnv 4672 dom cdm 4673 ∘ ccom 4677 Rel wrel 4678 Er wer 6607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-er 6610 |
| This theorem is referenced by: riinerm 6685 |
| Copyright terms: Public domain | W3C validator |