ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ereq1 GIF version

Theorem ereq1 6366
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ereq1 (𝑅 = 𝑆 → (𝑅 Er 𝐴𝑆 Er 𝐴))

Proof of Theorem ereq1
StepHypRef Expression
1 releq 4559 . . 3 (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆))
2 dmeq 4677 . . . 4 (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆)
32eqeq1d 2108 . . 3 (𝑅 = 𝑆 → (dom 𝑅 = 𝐴 ↔ dom 𝑆 = 𝐴))
4 cnveq 4651 . . . . . 6 (𝑅 = 𝑆𝑅 = 𝑆)
5 coeq1 4634 . . . . . . 7 (𝑅 = 𝑆 → (𝑅𝑅) = (𝑆𝑅))
6 coeq2 4635 . . . . . . 7 (𝑅 = 𝑆 → (𝑆𝑅) = (𝑆𝑆))
75, 6eqtrd 2132 . . . . . 6 (𝑅 = 𝑆 → (𝑅𝑅) = (𝑆𝑆))
84, 7uneq12d 3178 . . . . 5 (𝑅 = 𝑆 → (𝑅 ∪ (𝑅𝑅)) = (𝑆 ∪ (𝑆𝑆)))
98sseq1d 3076 . . . 4 (𝑅 = 𝑆 → ((𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅 ↔ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑅))
10 sseq2 3071 . . . 4 (𝑅 = 𝑆 → ((𝑆 ∪ (𝑆𝑆)) ⊆ 𝑅 ↔ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑆))
119, 10bitrd 187 . . 3 (𝑅 = 𝑆 → ((𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅 ↔ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑆))
121, 3, 113anbi123d 1258 . 2 (𝑅 = 𝑆 → ((Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅) ↔ (Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑆)))
13 df-er 6359 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
14 df-er 6359 . 2 (𝑆 Er 𝐴 ↔ (Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ (𝑆 ∪ (𝑆𝑆)) ⊆ 𝑆))
1512, 13, 143bitr4g 222 1 (𝑅 = 𝑆 → (𝑅 Er 𝐴𝑆 Er 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 930   = wceq 1299  cun 3019  wss 3021  ccnv 4476  dom cdm 4477  ccom 4481  Rel wrel 4482   Er wer 6356
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-er 6359
This theorem is referenced by:  riinerm  6432
  Copyright terms: Public domain W3C validator