![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ereq1 | GIF version |
Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ereq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Er 𝐴 ↔ 𝑆 Er 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releq 4741 | . . 3 ⊢ (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆)) | |
2 | dmeq 4862 | . . . 4 ⊢ (𝑅 = 𝑆 → dom 𝑅 = dom 𝑆) | |
3 | 2 | eqeq1d 2202 | . . 3 ⊢ (𝑅 = 𝑆 → (dom 𝑅 = 𝐴 ↔ dom 𝑆 = 𝐴)) |
4 | cnveq 4836 | . . . . . 6 ⊢ (𝑅 = 𝑆 → ◡𝑅 = ◡𝑆) | |
5 | coeq1 4819 | . . . . . . 7 ⊢ (𝑅 = 𝑆 → (𝑅 ∘ 𝑅) = (𝑆 ∘ 𝑅)) | |
6 | coeq2 4820 | . . . . . . 7 ⊢ (𝑅 = 𝑆 → (𝑆 ∘ 𝑅) = (𝑆 ∘ 𝑆)) | |
7 | 5, 6 | eqtrd 2226 | . . . . . 6 ⊢ (𝑅 = 𝑆 → (𝑅 ∘ 𝑅) = (𝑆 ∘ 𝑆)) |
8 | 4, 7 | uneq12d 3314 | . . . . 5 ⊢ (𝑅 = 𝑆 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) = (◡𝑆 ∪ (𝑆 ∘ 𝑆))) |
9 | 8 | sseq1d 3208 | . . . 4 ⊢ (𝑅 = 𝑆 → ((◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅 ↔ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑅)) |
10 | sseq2 3203 | . . . 4 ⊢ (𝑅 = 𝑆 → ((◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑅 ↔ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑆)) | |
11 | 9, 10 | bitrd 188 | . . 3 ⊢ (𝑅 = 𝑆 → ((◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅 ↔ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑆)) |
12 | 1, 3, 11 | 3anbi123d 1323 | . 2 ⊢ (𝑅 = 𝑆 → ((Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) ↔ (Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑆))) |
13 | df-er 6587 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
14 | df-er 6587 | . 2 ⊢ (𝑆 Er 𝐴 ↔ (Rel 𝑆 ∧ dom 𝑆 = 𝐴 ∧ (◡𝑆 ∪ (𝑆 ∘ 𝑆)) ⊆ 𝑆)) | |
15 | 12, 13, 14 | 3bitr4g 223 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Er 𝐴 ↔ 𝑆 Er 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∪ cun 3151 ⊆ wss 3153 ◡ccnv 4658 dom cdm 4659 ∘ ccom 4663 Rel wrel 4664 Er wer 6584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-er 6587 |
This theorem is referenced by: riinerm 6662 |
Copyright terms: Public domain | W3C validator |