ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpider GIF version

Theorem xpider 6608
Description: A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
xpider (𝐴 × 𝐴) Er 𝐴

Proof of Theorem xpider
StepHypRef Expression
1 relxp 4737 . 2 Rel (𝐴 × 𝐴)
2 dmxpid 4850 . 2 dom (𝐴 × 𝐴) = 𝐴
3 cnvxp 5049 . . 3 (𝐴 × 𝐴) = (𝐴 × 𝐴)
4 xpidtr 5021 . . 3 ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
5 uneq1 3284 . . . 4 ((𝐴 × 𝐴) = (𝐴 × 𝐴) → ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)))
6 unss2 3308 . . . 4 (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)))
7 unidm 3280 . . . . 5 ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴)
8 eqtr 2195 . . . . . 6 ((((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) ∧ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) → ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
9 sseq2 3181 . . . . . . 7 (((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴) → (((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) ↔ ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
109biimpd 144 . . . . . 6 (((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴) → (((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
118, 10syl 14 . . . . 5 ((((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) ∧ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) → (((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
127, 11mpan2 425 . . . 4 (((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → (((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
135, 6, 12syl2im 38 . . 3 ((𝐴 × 𝐴) = (𝐴 × 𝐴) → (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
143, 4, 13mp2 16 . 2 ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)
15 df-er 6537 . 2 ((𝐴 × 𝐴) Er 𝐴 ↔ (Rel (𝐴 × 𝐴) ∧ dom (𝐴 × 𝐴) = 𝐴 ∧ ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
161, 2, 14, 15mpbir3an 1179 1 (𝐴 × 𝐴) Er 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  cun 3129  wss 3131   × cxp 4626  ccnv 4627  dom cdm 4628  ccom 4632  Rel wrel 4633   Er wer 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-er 6537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator