ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpider GIF version

Theorem xpider 6665
Description: A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
xpider (𝐴 × 𝐴) Er 𝐴

Proof of Theorem xpider
StepHypRef Expression
1 relxp 4772 . 2 Rel (𝐴 × 𝐴)
2 dmxpid 4887 . 2 dom (𝐴 × 𝐴) = 𝐴
3 cnvxp 5088 . . 3 (𝐴 × 𝐴) = (𝐴 × 𝐴)
4 xpidtr 5060 . . 3 ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
5 uneq1 3310 . . . 4 ((𝐴 × 𝐴) = (𝐴 × 𝐴) → ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)))
6 unss2 3334 . . . 4 (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)))
7 unidm 3306 . . . . 5 ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴)
8 eqtr 2214 . . . . . 6 ((((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) ∧ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) → ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
9 sseq2 3207 . . . . . . 7 (((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴) → (((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) ↔ ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
109biimpd 144 . . . . . 6 (((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴) → (((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
118, 10syl 14 . . . . 5 ((((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) ∧ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) → (((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
127, 11mpan2 425 . . . 4 (((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → (((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
135, 6, 12syl2im 38 . . 3 ((𝐴 × 𝐴) = (𝐴 × 𝐴) → (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
143, 4, 13mp2 16 . 2 ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)
15 df-er 6592 . 2 ((𝐴 × 𝐴) Er 𝐴 ↔ (Rel (𝐴 × 𝐴) ∧ dom (𝐴 × 𝐴) = 𝐴 ∧ ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
161, 2, 14, 15mpbir3an 1181 1 (𝐴 × 𝐴) Er 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  cun 3155  wss 3157   × cxp 4661  ccnv 4662  dom cdm 4663  ccom 4667  Rel wrel 4668   Er wer 6589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-er 6592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator