ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpider GIF version

Theorem xpider 6572
Description: A square Cartesian product is an equivalence relation (in general it's not a poset). (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
xpider (𝐴 × 𝐴) Er 𝐴

Proof of Theorem xpider
StepHypRef Expression
1 relxp 4713 . 2 Rel (𝐴 × 𝐴)
2 dmxpid 4825 . 2 dom (𝐴 × 𝐴) = 𝐴
3 cnvxp 5022 . . 3 (𝐴 × 𝐴) = (𝐴 × 𝐴)
4 xpidtr 4994 . . 3 ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
5 uneq1 3269 . . . 4 ((𝐴 × 𝐴) = (𝐴 × 𝐴) → ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)))
6 unss2 3293 . . . 4 (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)))
7 unidm 3265 . . . . 5 ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴)
8 eqtr 2183 . . . . . 6 ((((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) ∧ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) → ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
9 sseq2 3166 . . . . . . 7 (((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴) → (((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) ↔ ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
109biimpd 143 . . . . . 6 (((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴) → (((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
118, 10syl 14 . . . . 5 ((((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) ∧ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) → (((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
127, 11mpan2 422 . . . 4 (((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → (((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ ((𝐴 × 𝐴) ∪ (𝐴 × 𝐴)) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
135, 6, 12syl2im 38 . . 3 ((𝐴 × 𝐴) = (𝐴 × 𝐴) → (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) → ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
143, 4, 13mp2 16 . 2 ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)
15 df-er 6501 . 2 ((𝐴 × 𝐴) Er 𝐴 ↔ (Rel (𝐴 × 𝐴) ∧ dom (𝐴 × 𝐴) = 𝐴 ∧ ((𝐴 × 𝐴) ∪ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴))) ⊆ (𝐴 × 𝐴)))
161, 2, 14, 15mpbir3an 1169 1 (𝐴 × 𝐴) Er 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  cun 3114  wss 3116   × cxp 4602  ccnv 4603  dom cdm 4604  ccom 4608  Rel wrel 4609   Er wer 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-er 6501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator