ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  errel GIF version

Theorem errel 6598
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errel (𝑅 Er 𝐴 → Rel 𝑅)

Proof of Theorem errel
StepHypRef Expression
1 df-er 6589 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp1bi 1014 1 (𝑅 Er 𝐴 → Rel 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cun 3152  wss 3154  ccnv 4659  dom cdm 4660  ccom 4664  Rel wrel 4665   Er wer 6586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-3an 982  df-er 6589
This theorem is referenced by:  ercl  6600  ersym  6601  ertr  6604  ercnv  6610  erssxp  6612  erth  6635  iinerm  6663  eqg0el  13302
  Copyright terms: Public domain W3C validator