ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  errel GIF version

Theorem errel 6510
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errel (𝑅 Er 𝐴 → Rel 𝑅)

Proof of Theorem errel
StepHypRef Expression
1 df-er 6501 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp1bi 1002 1 (𝑅 Er 𝐴 → Rel 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cun 3114  wss 3116  ccnv 4603  dom cdm 4604  ccom 4608  Rel wrel 4609   Er wer 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-3an 970  df-er 6501
This theorem is referenced by:  ercl  6512  ersym  6513  ertr  6516  ercnv  6522  erssxp  6524  erth  6545  iinerm  6573
  Copyright terms: Public domain W3C validator