ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  errel GIF version

Theorem errel 6299
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errel (𝑅 Er 𝐴 → Rel 𝑅)

Proof of Theorem errel
StepHypRef Expression
1 df-er 6290 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp1bi 958 1 (𝑅 Er 𝐴 → Rel 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1289  cun 2997  wss 2999  ccnv 4437  dom cdm 4438  ccom 4442  Rel wrel 4443   Er wer 6287
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104
This theorem depends on definitions:  df-bi 115  df-3an 926  df-er 6290
This theorem is referenced by:  ercl  6301  ersym  6302  ertr  6305  ercnv  6311  erssxp  6313  erth  6334  iinerm  6362
  Copyright terms: Public domain W3C validator