![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > errel | GIF version |
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
errel | ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 6290 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp1bi 958 | 1 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∪ cun 2997 ⊆ wss 2999 ◡ccnv 4437 dom cdm 4438 ∘ ccom 4442 Rel wrel 4443 Er wer 6287 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-er 6290 |
This theorem is referenced by: ercl 6301 ersym 6302 ertr 6305 ercnv 6311 erssxp 6313 erth 6334 iinerm 6362 |
Copyright terms: Public domain | W3C validator |