ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  errel GIF version

Theorem errel 6522
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errel (𝑅 Er 𝐴 → Rel 𝑅)

Proof of Theorem errel
StepHypRef Expression
1 df-er 6513 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp1bi 1007 1 (𝑅 Er 𝐴 → Rel 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  cun 3119  wss 3121  ccnv 4610  dom cdm 4611  ccom 4615  Rel wrel 4616   Er wer 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-3an 975  df-er 6513
This theorem is referenced by:  ercl  6524  ersym  6525  ertr  6528  ercnv  6534  erssxp  6536  erth  6557  iinerm  6585
  Copyright terms: Public domain W3C validator