Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > errel | GIF version |
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
errel | ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 6501 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp1bi 1002 | 1 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∪ cun 3114 ⊆ wss 3116 ◡ccnv 4603 dom cdm 4604 ∘ ccom 4608 Rel wrel 4609 Er wer 6498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-er 6501 |
This theorem is referenced by: ercl 6512 ersym 6513 ertr 6516 ercnv 6522 erssxp 6524 erth 6545 iinerm 6573 |
Copyright terms: Public domain | W3C validator |