![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > errel | GIF version |
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
errel | ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 6587 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp1bi 1014 | 1 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∪ cun 3151 ⊆ wss 3153 ◡ccnv 4658 dom cdm 4659 ∘ ccom 4663 Rel wrel 4664 Er wer 6584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-er 6587 |
This theorem is referenced by: ercl 6598 ersym 6599 ertr 6602 ercnv 6608 erssxp 6610 erth 6633 iinerm 6661 eqg0el 13299 |
Copyright terms: Public domain | W3C validator |