| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > errel | GIF version | ||
| Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| errel | ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-er 6632 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 2 | 1 | simp1bi 1015 | 1 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∪ cun 3168 ⊆ wss 3170 ◡ccnv 4681 dom cdm 4682 ∘ ccom 4686 Rel wrel 4687 Er wer 6629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-er 6632 |
| This theorem is referenced by: ercl 6643 ersym 6644 ertr 6647 ercnv 6653 erssxp 6655 erth 6678 iinerm 6706 eqg0el 13635 |
| Copyright terms: Public domain | W3C validator |