| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erref | GIF version | ||
| Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ersymb.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| erref.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| erref | ⊢ (𝜑 → 𝐴𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erref.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | ersymb.1 | . . . . 5 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 3 | erdm 6698 | . . . . 5 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
| 5 | 1, 4 | eleqtrrd 2309 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
| 6 | eldmg 4918 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
| 7 | 1, 6 | syl 14 | . . 3 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
| 8 | 5, 7 | mpbid 147 | . 2 ⊢ (𝜑 → ∃𝑥 𝐴𝑅𝑥) |
| 9 | 2 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝑅 Er 𝑋) |
| 10 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝐴𝑅𝑥) | |
| 11 | 9, 10, 10 | ertr4d 6707 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝐴𝑅𝐴) |
| 12 | 8, 11 | exlimddv 1945 | 1 ⊢ (𝜑 → 𝐴𝑅𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 class class class wbr 4083 dom cdm 4719 Er wer 6685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-er 6688 |
| This theorem is referenced by: iserd 6714 erth 6734 iinerm 6762 erinxp 6764 qusgrp 13777 |
| Copyright terms: Public domain | W3C validator |