ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erref GIF version

Theorem erref 6708
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
erref.2 (𝜑𝐴𝑋)
Assertion
Ref Expression
erref (𝜑𝐴𝑅𝐴)

Proof of Theorem erref
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 erref.2 . . . 4 (𝜑𝐴𝑋)
2 ersymb.1 . . . . 5 (𝜑𝑅 Er 𝑋)
3 erdm 6698 . . . . 5 (𝑅 Er 𝑋 → dom 𝑅 = 𝑋)
42, 3syl 14 . . . 4 (𝜑 → dom 𝑅 = 𝑋)
51, 4eleqtrrd 2309 . . 3 (𝜑𝐴 ∈ dom 𝑅)
6 eldmg 4918 . . . 4 (𝐴𝑋 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
71, 6syl 14 . . 3 (𝜑 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
85, 7mpbid 147 . 2 (𝜑 → ∃𝑥 𝐴𝑅𝑥)
92adantr 276 . . 3 ((𝜑𝐴𝑅𝑥) → 𝑅 Er 𝑋)
10 simpr 110 . . 3 ((𝜑𝐴𝑅𝑥) → 𝐴𝑅𝑥)
119, 10, 10ertr4d 6707 . 2 ((𝜑𝐴𝑅𝑥) → 𝐴𝑅𝐴)
128, 11exlimddv 1945 1 (𝜑𝐴𝑅𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200   class class class wbr 4083  dom cdm 4719   Er wer 6685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-er 6688
This theorem is referenced by:  iserd  6714  erth  6734  iinerm  6762  erinxp  6764  qusgrp  13777
  Copyright terms: Public domain W3C validator