Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-er | Unicode version |
Description: Define the equivalence relation predicate. Our notation is not standard. A formal notation doesn't seem to exist in the literature; instead only informal English tends to be used. The present definition, although somewhat cryptic, nicely avoids dummy variables. In dfer2 6498 we derive a more typical definition. We show that an equivalence relation is reflexive, symmetric, and transitive in erref 6517, ersymb 6511, and ertr 6512. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 2-Nov-2015.) |
Ref | Expression |
---|---|
df-er |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 | |
2 | cR | . . 3 | |
3 | 1, 2 | wer 6494 | . 2 |
4 | 2 | wrel 4608 | . . 3 |
5 | 2 | cdm 4603 | . . . 4 |
6 | 5, 1 | wceq 1343 | . . 3 |
7 | 2 | ccnv 4602 | . . . . 5 |
8 | 2, 2 | ccom 4607 | . . . . 5 |
9 | 7, 8 | cun 3113 | . . . 4 |
10 | 9, 2 | wss 3115 | . . 3 |
11 | 4, 6, 10 | w3a 968 | . 2 |
12 | 3, 11 | wb 104 | 1 |
Colors of variables: wff set class |
This definition is referenced by: dfer2 6498 ereq1 6504 ereq2 6505 errel 6506 erdm 6507 ersym 6509 ertr 6512 xpider 6568 |
Copyright terms: Public domain | W3C validator |