| Step | Hyp | Ref
 | Expression | 
| 1 |   | ersymb.1 | 
. . . . . . 7
⊢ (𝜑 → 𝑅 Er 𝑋) | 
| 2 |   | errel 6601 | 
. . . . . . 7
⊢ (𝑅 Er 𝑋 → Rel 𝑅) | 
| 3 | 1, 2 | syl 14 | 
. . . . . 6
⊢ (𝜑 → Rel 𝑅) | 
| 4 |   | simpr 110 | 
. . . . . 6
⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐶) | 
| 5 |   | brrelex 4703 | 
. . . . . 6
⊢ ((Rel
𝑅 ∧ 𝐵𝑅𝐶) → 𝐵 ∈ V) | 
| 6 | 3, 4, 5 | syl2an 289 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐵 ∈ V) | 
| 7 |   | simpr 110 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) | 
| 8 |   | breq2 4037 | 
. . . . . . 7
⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | 
| 9 |   | breq1 4036 | 
. . . . . . 7
⊢ (𝑥 = 𝐵 → (𝑥𝑅𝐶 ↔ 𝐵𝑅𝐶)) | 
| 10 | 8, 9 | anbi12d 473 | 
. . . . . 6
⊢ (𝑥 = 𝐵 → ((𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶) ↔ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶))) | 
| 11 | 10 | spcegv 2852 | 
. . . . 5
⊢ (𝐵 ∈ V → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → ∃𝑥(𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶))) | 
| 12 | 6, 7, 11 | sylc 62 | 
. . . 4
⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → ∃𝑥(𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶)) | 
| 13 |   | simpl 109 | 
. . . . . 6
⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐵) | 
| 14 |   | brrelex 4703 | 
. . . . . 6
⊢ ((Rel
𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | 
| 15 | 3, 13, 14 | syl2an 289 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐴 ∈ V) | 
| 16 |   | brrelex2 4704 | 
. . . . . 6
⊢ ((Rel
𝑅 ∧ 𝐵𝑅𝐶) → 𝐶 ∈ V) | 
| 17 | 3, 4, 16 | syl2an 289 | 
. . . . 5
⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐶 ∈ V) | 
| 18 |   | brcog 4833 | 
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴(𝑅 ∘ 𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶))) | 
| 19 | 15, 17, 18 | syl2anc 411 | 
. . . 4
⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → (𝐴(𝑅 ∘ 𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝑥𝑅𝐶))) | 
| 20 | 12, 19 | mpbird 167 | 
. . 3
⊢ ((𝜑 ∧ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶)) → 𝐴(𝑅 ∘ 𝑅)𝐶) | 
| 21 | 20 | ex 115 | 
. 2
⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴(𝑅 ∘ 𝑅)𝐶)) | 
| 22 |   | df-er 6592 | 
. . . . . 6
⊢ (𝑅 Er 𝑋 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | 
| 23 | 22 | simp3bi 1016 | 
. . . . 5
⊢ (𝑅 Er 𝑋 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) | 
| 24 | 1, 23 | syl 14 | 
. . . 4
⊢ (𝜑 → (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) | 
| 25 | 24 | unssbd 3341 | 
. . 3
⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) | 
| 26 | 25 | ssbrd 4076 | 
. 2
⊢ (𝜑 → (𝐴(𝑅 ∘ 𝑅)𝐶 → 𝐴𝑅𝐶)) | 
| 27 | 21, 26 | syld 45 | 
1
⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) |