ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ertr GIF version

Theorem ertr 6604
Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
Assertion
Ref Expression
ertr (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))

Proof of Theorem ertr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ersymb.1 . . . . . . 7 (𝜑𝑅 Er 𝑋)
2 errel 6598 . . . . . . 7 (𝑅 Er 𝑋 → Rel 𝑅)
31, 2syl 14 . . . . . 6 (𝜑 → Rel 𝑅)
4 simpr 110 . . . . . 6 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐵𝑅𝐶)
5 brrelex 4700 . . . . . 6 ((Rel 𝑅𝐵𝑅𝐶) → 𝐵 ∈ V)
63, 4, 5syl2an 289 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐵 ∈ V)
7 simpr 110 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → (𝐴𝑅𝐵𝐵𝑅𝐶))
8 breq2 4034 . . . . . . 7 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
9 breq1 4033 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝑅𝐶𝐵𝑅𝐶))
108, 9anbi12d 473 . . . . . 6 (𝑥 = 𝐵 → ((𝐴𝑅𝑥𝑥𝑅𝐶) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
1110spcegv 2849 . . . . 5 (𝐵 ∈ V → ((𝐴𝑅𝐵𝐵𝑅𝐶) → ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶)))
126, 7, 11sylc 62 . . . 4 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶))
13 simpl 109 . . . . . 6 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐵)
14 brrelex 4700 . . . . . 6 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
153, 13, 14syl2an 289 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴 ∈ V)
16 brrelex2 4701 . . . . . 6 ((Rel 𝑅𝐵𝑅𝐶) → 𝐶 ∈ V)
173, 4, 16syl2an 289 . . . . 5 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐶 ∈ V)
18 brcog 4830 . . . . 5 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴(𝑅𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶)))
1915, 17, 18syl2anc 411 . . . 4 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → (𝐴(𝑅𝑅)𝐶 ↔ ∃𝑥(𝐴𝑅𝑥𝑥𝑅𝐶)))
2012, 19mpbird 167 . . 3 ((𝜑 ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴(𝑅𝑅)𝐶)
2120ex 115 . 2 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴(𝑅𝑅)𝐶))
22 df-er 6589 . . . . . 6 (𝑅 Er 𝑋 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝑋 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
2322simp3bi 1016 . . . . 5 (𝑅 Er 𝑋 → (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
241, 23syl 14 . . . 4 (𝜑 → (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)
2524unssbd 3338 . . 3 (𝜑 → (𝑅𝑅) ⊆ 𝑅)
2625ssbrd 4073 . 2 (𝜑 → (𝐴(𝑅𝑅)𝐶𝐴𝑅𝐶))
2721, 26syld 45 1 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760  cun 3152  wss 3154   class class class wbr 4030  ccnv 4659  dom cdm 4660  ccom 4664  Rel wrel 4665   Er wer 6586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-co 4669  df-er 6589
This theorem is referenced by:  ertrd  6605  erth  6635  iinerm  6663  entr  6840
  Copyright terms: Public domain W3C validator