| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ereq2 | GIF version | ||
| Description: Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ereq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Er 𝐴 ↔ 𝑅 Er 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2206 | . . 3 ⊢ (𝐴 = 𝐵 → (dom 𝑅 = 𝐴 ↔ dom 𝑅 = 𝐵)) | |
| 2 | 1 | 3anbi2d 1328 | . 2 ⊢ (𝐴 = 𝐵 → ((Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅) ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐵 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅))) |
| 3 | df-er 6592 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 4 | df-er 6592 | . 2 ⊢ (𝑅 Er 𝐵 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐵 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Er 𝐴 ↔ 𝑅 Er 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∪ cun 3155 ⊆ wss 3157 ◡ccnv 4662 dom cdm 4663 ∘ ccom 4667 Rel wrel 4668 Er wer 6589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-cleq 2189 df-er 6592 |
| This theorem is referenced by: iserd 6618 |
| Copyright terms: Public domain | W3C validator |