ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ereq2 GIF version

Theorem ereq2 6646
Description: Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
ereq2 (𝐴 = 𝐵 → (𝑅 Er 𝐴𝑅 Er 𝐵))

Proof of Theorem ereq2
StepHypRef Expression
1 eqeq2 2216 . . 3 (𝐴 = 𝐵 → (dom 𝑅 = 𝐴 ↔ dom 𝑅 = 𝐵))
213anbi2d 1330 . 2 (𝐴 = 𝐵 → ((Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅) ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐵 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅)))
3 df-er 6638 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
4 df-er 6638 . 2 (𝑅 Er 𝐵 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐵 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
52, 3, 43bitr4g 223 1 (𝐴 = 𝐵 → (𝑅 Er 𝐴𝑅 Er 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 981   = wceq 1373  cun 3168  wss 3170  ccnv 4687  dom cdm 4688  ccom 4692  Rel wrel 4693   Er wer 6635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534  ax-17 1550  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-cleq 2199  df-er 6638
This theorem is referenced by:  iserd  6664
  Copyright terms: Public domain W3C validator