Detailed syntax breakdown of Definition df-proddc
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class 𝐴 |
2 | | cB |
. . 3
class 𝐵 |
3 | | vk |
. . 3
setvar 𝑘 |
4 | 1, 2, 3 | cprod 11513 |
. 2
class
∏𝑘 ∈
𝐴 𝐵 |
5 | | vm |
. . . . . . . . . 10
setvar 𝑚 |
6 | 5 | cv 1347 |
. . . . . . . . 9
class 𝑚 |
7 | | cuz 9487 |
. . . . . . . . 9
class
ℤ≥ |
8 | 6, 7 | cfv 5198 |
. . . . . . . 8
class
(ℤ≥‘𝑚) |
9 | 1, 8 | wss 3121 |
. . . . . . 7
wff 𝐴 ⊆
(ℤ≥‘𝑚) |
10 | | vj |
. . . . . . . . . . 11
setvar 𝑗 |
11 | 10 | cv 1347 |
. . . . . . . . . 10
class 𝑗 |
12 | 11, 1 | wcel 2141 |
. . . . . . . . 9
wff 𝑗 ∈ 𝐴 |
13 | 12 | wdc 829 |
. . . . . . . 8
wff
DECID 𝑗 ∈ 𝐴 |
14 | 13, 10, 8 | wral 2448 |
. . . . . . 7
wff
∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 |
15 | 9, 14 | wa 103 |
. . . . . 6
wff (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
16 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
17 | 16 | cv 1347 |
. . . . . . . . . . 11
class 𝑦 |
18 | | cc0 7774 |
. . . . . . . . . . 11
class
0 |
19 | | cap 8500 |
. . . . . . . . . . 11
class
# |
20 | 17, 18, 19 | wbr 3989 |
. . . . . . . . . 10
wff 𝑦 # 0 |
21 | | cmul 7779 |
. . . . . . . . . . . 12
class
· |
22 | | cz 9212 |
. . . . . . . . . . . . 13
class
ℤ |
23 | 3 | cv 1347 |
. . . . . . . . . . . . . . 15
class 𝑘 |
24 | 23, 1 | wcel 2141 |
. . . . . . . . . . . . . 14
wff 𝑘 ∈ 𝐴 |
25 | | c1 7775 |
. . . . . . . . . . . . . 14
class
1 |
26 | 24, 2, 25 | cif 3526 |
. . . . . . . . . . . . 13
class if(𝑘 ∈ 𝐴, 𝐵, 1) |
27 | 3, 22, 26 | cmpt 4050 |
. . . . . . . . . . . 12
class (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) |
28 | | vn |
. . . . . . . . . . . . 13
setvar 𝑛 |
29 | 28 | cv 1347 |
. . . . . . . . . . . 12
class 𝑛 |
30 | 21, 27, 29 | cseq 10401 |
. . . . . . . . . . 11
class seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) |
31 | | cli 11241 |
. . . . . . . . . . 11
class
⇝ |
32 | 30, 17, 31 | wbr 3989 |
. . . . . . . . . 10
wff seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦 |
33 | 20, 32 | wa 103 |
. . . . . . . . 9
wff (𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) |
34 | 33, 16 | wex 1485 |
. . . . . . . 8
wff
∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) |
35 | 34, 28, 8 | wrex 2449 |
. . . . . . 7
wff
∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) |
36 | 21, 27, 6 | cseq 10401 |
. . . . . . . 8
class seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) |
37 | | vx |
. . . . . . . . 9
setvar 𝑥 |
38 | 37 | cv 1347 |
. . . . . . . 8
class 𝑥 |
39 | 36, 38, 31 | wbr 3989 |
. . . . . . 7
wff seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 |
40 | 35, 39 | wa 103 |
. . . . . 6
wff
(∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) |
41 | 15, 40 | wa 103 |
. . . . 5
wff ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
42 | 41, 5, 22 | wrex 2449 |
. . . 4
wff
∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
43 | | cfz 9965 |
. . . . . . . . 9
class
... |
44 | 25, 6, 43 | co 5853 |
. . . . . . . 8
class
(1...𝑚) |
45 | | vf |
. . . . . . . . 9
setvar 𝑓 |
46 | 45 | cv 1347 |
. . . . . . . 8
class 𝑓 |
47 | 44, 1, 46 | wf1o 5197 |
. . . . . . 7
wff 𝑓:(1...𝑚)–1-1-onto→𝐴 |
48 | | cn 8878 |
. . . . . . . . . . 11
class
ℕ |
49 | | cle 7955 |
. . . . . . . . . . . . 13
class
≤ |
50 | 29, 6, 49 | wbr 3989 |
. . . . . . . . . . . 12
wff 𝑛 ≤ 𝑚 |
51 | 29, 46 | cfv 5198 |
. . . . . . . . . . . . 13
class (𝑓‘𝑛) |
52 | 3, 51, 2 | csb 3049 |
. . . . . . . . . . . 12
class
⦋(𝑓‘𝑛) / 𝑘⦌𝐵 |
53 | 50, 52, 25 | cif 3526 |
. . . . . . . . . . 11
class if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1) |
54 | 28, 48, 53 | cmpt 4050 |
. . . . . . . . . 10
class (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)) |
55 | 21, 54, 25 | cseq 10401 |
. . . . . . . . 9
class seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ≤
𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1))) |
56 | 6, 55 | cfv 5198 |
. . . . . . . 8
class (seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ≤
𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) |
57 | 38, 56 | wceq 1348 |
. . . . . . 7
wff 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) |
58 | 47, 57 | wa 103 |
. . . . . 6
wff (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) |
59 | 58, 45 | wex 1485 |
. . . . 5
wff
∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) |
60 | 59, 5, 48 | wrex 2449 |
. . . 4
wff
∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) |
61 | 42, 60 | wo 703 |
. . 3
wff
(∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) |
62 | 61, 37 | cio 5158 |
. 2
class
(℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
63 | 4, 62 | wceq 1348 |
1
wff
∏𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |