Detailed syntax breakdown of Definition df-proddc
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class 𝐴 |
| 2 | | cB |
. . 3
class 𝐵 |
| 3 | | vk |
. . 3
setvar 𝑘 |
| 4 | 1, 2, 3 | cprod 11732 |
. 2
class
∏𝑘 ∈
𝐴 𝐵 |
| 5 | | vm |
. . . . . . . . . 10
setvar 𝑚 |
| 6 | 5 | cv 1363 |
. . . . . . . . 9
class 𝑚 |
| 7 | | cuz 9618 |
. . . . . . . . 9
class
ℤ≥ |
| 8 | 6, 7 | cfv 5259 |
. . . . . . . 8
class
(ℤ≥‘𝑚) |
| 9 | 1, 8 | wss 3157 |
. . . . . . 7
wff 𝐴 ⊆
(ℤ≥‘𝑚) |
| 10 | | vj |
. . . . . . . . . . 11
setvar 𝑗 |
| 11 | 10 | cv 1363 |
. . . . . . . . . 10
class 𝑗 |
| 12 | 11, 1 | wcel 2167 |
. . . . . . . . 9
wff 𝑗 ∈ 𝐴 |
| 13 | 12 | wdc 835 |
. . . . . . . 8
wff
DECID 𝑗 ∈ 𝐴 |
| 14 | 13, 10, 8 | wral 2475 |
. . . . . . 7
wff
∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 |
| 15 | 9, 14 | wa 104 |
. . . . . 6
wff (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
| 16 | | vy |
. . . . . . . . . . . 12
setvar 𝑦 |
| 17 | 16 | cv 1363 |
. . . . . . . . . . 11
class 𝑦 |
| 18 | | cc0 7896 |
. . . . . . . . . . 11
class
0 |
| 19 | | cap 8625 |
. . . . . . . . . . 11
class
# |
| 20 | 17, 18, 19 | wbr 4034 |
. . . . . . . . . 10
wff 𝑦 # 0 |
| 21 | | cmul 7901 |
. . . . . . . . . . . 12
class
· |
| 22 | | cz 9343 |
. . . . . . . . . . . . 13
class
ℤ |
| 23 | 3 | cv 1363 |
. . . . . . . . . . . . . . 15
class 𝑘 |
| 24 | 23, 1 | wcel 2167 |
. . . . . . . . . . . . . 14
wff 𝑘 ∈ 𝐴 |
| 25 | | c1 7897 |
. . . . . . . . . . . . . 14
class
1 |
| 26 | 24, 2, 25 | cif 3562 |
. . . . . . . . . . . . 13
class if(𝑘 ∈ 𝐴, 𝐵, 1) |
| 27 | 3, 22, 26 | cmpt 4095 |
. . . . . . . . . . . 12
class (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) |
| 28 | | vn |
. . . . . . . . . . . . 13
setvar 𝑛 |
| 29 | 28 | cv 1363 |
. . . . . . . . . . . 12
class 𝑛 |
| 30 | 21, 27, 29 | cseq 10556 |
. . . . . . . . . . 11
class seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) |
| 31 | | cli 11460 |
. . . . . . . . . . 11
class
⇝ |
| 32 | 30, 17, 31 | wbr 4034 |
. . . . . . . . . 10
wff seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦 |
| 33 | 20, 32 | wa 104 |
. . . . . . . . 9
wff (𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) |
| 34 | 33, 16 | wex 1506 |
. . . . . . . 8
wff
∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) |
| 35 | 34, 28, 8 | wrex 2476 |
. . . . . . 7
wff
∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) |
| 36 | 21, 27, 6 | cseq 10556 |
. . . . . . . 8
class seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) |
| 37 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 38 | 37 | cv 1363 |
. . . . . . . 8
class 𝑥 |
| 39 | 36, 38, 31 | wbr 4034 |
. . . . . . 7
wff seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 |
| 40 | 35, 39 | wa 104 |
. . . . . 6
wff
(∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) |
| 41 | 15, 40 | wa 104 |
. . . . 5
wff ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
| 42 | 41, 5, 22 | wrex 2476 |
. . . 4
wff
∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
| 43 | | cfz 10100 |
. . . . . . . . 9
class
... |
| 44 | 25, 6, 43 | co 5925 |
. . . . . . . 8
class
(1...𝑚) |
| 45 | | vf |
. . . . . . . . 9
setvar 𝑓 |
| 46 | 45 | cv 1363 |
. . . . . . . 8
class 𝑓 |
| 47 | 44, 1, 46 | wf1o 5258 |
. . . . . . 7
wff 𝑓:(1...𝑚)–1-1-onto→𝐴 |
| 48 | | cn 9007 |
. . . . . . . . . . 11
class
ℕ |
| 49 | | cle 8079 |
. . . . . . . . . . . . 13
class
≤ |
| 50 | 29, 6, 49 | wbr 4034 |
. . . . . . . . . . . 12
wff 𝑛 ≤ 𝑚 |
| 51 | 29, 46 | cfv 5259 |
. . . . . . . . . . . . 13
class (𝑓‘𝑛) |
| 52 | 3, 51, 2 | csb 3084 |
. . . . . . . . . . . 12
class
⦋(𝑓‘𝑛) / 𝑘⦌𝐵 |
| 53 | 50, 52, 25 | cif 3562 |
. . . . . . . . . . 11
class if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1) |
| 54 | 28, 48, 53 | cmpt 4095 |
. . . . . . . . . 10
class (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)) |
| 55 | 21, 54, 25 | cseq 10556 |
. . . . . . . . 9
class seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ≤
𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1))) |
| 56 | 6, 55 | cfv 5259 |
. . . . . . . 8
class (seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ≤
𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) |
| 57 | 38, 56 | wceq 1364 |
. . . . . . 7
wff 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) |
| 58 | 47, 57 | wa 104 |
. . . . . 6
wff (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) |
| 59 | 58, 45 | wex 1506 |
. . . . 5
wff
∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) |
| 60 | 59, 5, 48 | wrex 2476 |
. . . 4
wff
∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) |
| 61 | 42, 60 | wo 709 |
. . 3
wff
(∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) |
| 62 | 61, 37 | cio 5218 |
. 2
class
(℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
| 63 | 4, 62 | wceq 1364 |
1
wff
∏𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |