Detailed syntax breakdown of Definition df-proddc
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cA | 
. . 3
class 𝐴 | 
| 2 |   | cB | 
. . 3
class 𝐵 | 
| 3 |   | vk | 
. . 3
setvar 𝑘 | 
| 4 | 1, 2, 3 | cprod 11715 | 
. 2
class
∏𝑘 ∈
𝐴 𝐵 | 
| 5 |   | vm | 
. . . . . . . . . 10
setvar 𝑚 | 
| 6 | 5 | cv 1363 | 
. . . . . . . . 9
class 𝑚 | 
| 7 |   | cuz 9601 | 
. . . . . . . . 9
class
ℤ≥ | 
| 8 | 6, 7 | cfv 5258 | 
. . . . . . . 8
class
(ℤ≥‘𝑚) | 
| 9 | 1, 8 | wss 3157 | 
. . . . . . 7
wff 𝐴 ⊆
(ℤ≥‘𝑚) | 
| 10 |   | vj | 
. . . . . . . . . . 11
setvar 𝑗 | 
| 11 | 10 | cv 1363 | 
. . . . . . . . . 10
class 𝑗 | 
| 12 | 11, 1 | wcel 2167 | 
. . . . . . . . 9
wff 𝑗 ∈ 𝐴 | 
| 13 | 12 | wdc 835 | 
. . . . . . . 8
wff
DECID 𝑗 ∈ 𝐴 | 
| 14 | 13, 10, 8 | wral 2475 | 
. . . . . . 7
wff
∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 | 
| 15 | 9, 14 | wa 104 | 
. . . . . 6
wff (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) | 
| 16 |   | vy | 
. . . . . . . . . . . 12
setvar 𝑦 | 
| 17 | 16 | cv 1363 | 
. . . . . . . . . . 11
class 𝑦 | 
| 18 |   | cc0 7879 | 
. . . . . . . . . . 11
class
0 | 
| 19 |   | cap 8608 | 
. . . . . . . . . . 11
class 
# | 
| 20 | 17, 18, 19 | wbr 4033 | 
. . . . . . . . . 10
wff 𝑦 # 0 | 
| 21 |   | cmul 7884 | 
. . . . . . . . . . . 12
class 
· | 
| 22 |   | cz 9326 | 
. . . . . . . . . . . . 13
class
ℤ | 
| 23 | 3 | cv 1363 | 
. . . . . . . . . . . . . . 15
class 𝑘 | 
| 24 | 23, 1 | wcel 2167 | 
. . . . . . . . . . . . . 14
wff 𝑘 ∈ 𝐴 | 
| 25 |   | c1 7880 | 
. . . . . . . . . . . . . 14
class
1 | 
| 26 | 24, 2, 25 | cif 3561 | 
. . . . . . . . . . . . 13
class if(𝑘 ∈ 𝐴, 𝐵, 1) | 
| 27 | 3, 22, 26 | cmpt 4094 | 
. . . . . . . . . . . 12
class (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) | 
| 28 |   | vn | 
. . . . . . . . . . . . 13
setvar 𝑛 | 
| 29 | 28 | cv 1363 | 
. . . . . . . . . . . 12
class 𝑛 | 
| 30 | 21, 27, 29 | cseq 10539 | 
. . . . . . . . . . 11
class seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) | 
| 31 |   | cli 11443 | 
. . . . . . . . . . 11
class 
⇝ | 
| 32 | 30, 17, 31 | wbr 4033 | 
. . . . . . . . . 10
wff seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦 | 
| 33 | 20, 32 | wa 104 | 
. . . . . . . . 9
wff (𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) | 
| 34 | 33, 16 | wex 1506 | 
. . . . . . . 8
wff
∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) | 
| 35 | 34, 28, 8 | wrex 2476 | 
. . . . . . 7
wff
∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) | 
| 36 | 21, 27, 6 | cseq 10539 | 
. . . . . . . 8
class seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) | 
| 37 |   | vx | 
. . . . . . . . 9
setvar 𝑥 | 
| 38 | 37 | cv 1363 | 
. . . . . . . 8
class 𝑥 | 
| 39 | 36, 38, 31 | wbr 4033 | 
. . . . . . 7
wff seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 | 
| 40 | 35, 39 | wa 104 | 
. . . . . 6
wff
(∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) | 
| 41 | 15, 40 | wa 104 | 
. . . . 5
wff ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) | 
| 42 | 41, 5, 22 | wrex 2476 | 
. . . 4
wff
∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) | 
| 43 |   | cfz 10083 | 
. . . . . . . . 9
class
... | 
| 44 | 25, 6, 43 | co 5922 | 
. . . . . . . 8
class
(1...𝑚) | 
| 45 |   | vf | 
. . . . . . . . 9
setvar 𝑓 | 
| 46 | 45 | cv 1363 | 
. . . . . . . 8
class 𝑓 | 
| 47 | 44, 1, 46 | wf1o 5257 | 
. . . . . . 7
wff 𝑓:(1...𝑚)–1-1-onto→𝐴 | 
| 48 |   | cn 8990 | 
. . . . . . . . . . 11
class
ℕ | 
| 49 |   | cle 8062 | 
. . . . . . . . . . . . 13
class 
≤ | 
| 50 | 29, 6, 49 | wbr 4033 | 
. . . . . . . . . . . 12
wff 𝑛 ≤ 𝑚 | 
| 51 | 29, 46 | cfv 5258 | 
. . . . . . . . . . . . 13
class (𝑓‘𝑛) | 
| 52 | 3, 51, 2 | csb 3084 | 
. . . . . . . . . . . 12
class
⦋(𝑓‘𝑛) / 𝑘⦌𝐵 | 
| 53 | 50, 52, 25 | cif 3561 | 
. . . . . . . . . . 11
class if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1) | 
| 54 | 28, 48, 53 | cmpt 4094 | 
. . . . . . . . . 10
class (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)) | 
| 55 | 21, 54, 25 | cseq 10539 | 
. . . . . . . . 9
class seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ≤
𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1))) | 
| 56 | 6, 55 | cfv 5258 | 
. . . . . . . 8
class (seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ≤
𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) | 
| 57 | 38, 56 | wceq 1364 | 
. . . . . . 7
wff 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) | 
| 58 | 47, 57 | wa 104 | 
. . . . . 6
wff (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) | 
| 59 | 58, 45 | wex 1506 | 
. . . . 5
wff
∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) | 
| 60 | 59, 5, 48 | wrex 2476 | 
. . . 4
wff
∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) | 
| 61 | 42, 60 | wo 709 | 
. . 3
wff
(∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) | 
| 62 | 61, 37 | cio 5217 | 
. 2
class
(℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) | 
| 63 | 4, 62 | wceq 1364 | 
1
wff
∏𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |