HomeHome Intuitionistic Logic Explorer
Theorem List (p. 116 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11501-11600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcbvprodi 11501* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝑘𝐵    &   𝑗𝐶    &   (𝑗 = 𝑘𝐵 = 𝐶)       𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
 
Theoremprodeq1i 11502* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝐴 = 𝐵       𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶
 
Theoremprodeq2i 11503* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝑘𝐴𝐵 = 𝐶)       𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶
 
Theoremprodeq12i 11504* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝐴 = 𝐵    &   (𝑘𝐴𝐶 = 𝐷)       𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐷
 
Theoremprodeq1d 11505* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝜑𝐴 = 𝐵)       (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
 
Theoremprodeq2d 11506* Equality deduction for product. Note that unlike prodeq2dv 11507, 𝑘 may occur in 𝜑. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)       (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theoremprodeq2dv 11507* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
((𝜑𝑘𝐴) → 𝐵 = 𝐶)       (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theoremprodeq2sdv 11508* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝜑𝐵 = 𝐶)       (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theorem2cprodeq2dv 11509* Equality deduction for double product. (Contributed by Scott Fenton, 4-Dec-2017.)
((𝜑𝑗𝐴𝑘𝐵) → 𝐶 = 𝐷)       (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑗𝐴𝑘𝐵 𝐷)
 
Theoremprodeq12dv 11510* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑘𝐴) → 𝐶 = 𝐷)       (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐷)
 
Theoremprodeq12rdv 11511* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑘𝐵) → 𝐶 = 𝐷)       (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐷)
 
Theoremprodrbdclem 11512* Lemma for prodrbdc 11515. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))       ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
 
Theoremfproddccvg 11513* The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐴 ⊆ (𝑀...𝑁))       (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq𝑀( · , 𝐹)‘𝑁))
 
Theoremprodrbdclem2 11514* Lemma for prodrbdc 11515. (Contributed by Scott Fenton, 4-Dec-2017.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑𝐴 ⊆ (ℤ𝑁))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)       ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
 
Theoremprodrbdc 11515* Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑𝐴 ⊆ (ℤ𝑁))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)       (𝜑 → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
 
Theoremprodmodclem3 11516* Lemma for prodmodc 11519. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))    &   𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝐾𝑗) / 𝑘𝐵, 1))    &   (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))    &   (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)    &   (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)       (𝜑 → (seq1( · , 𝐺)‘𝑀) = (seq1( · , 𝐻)‘𝑁))
 
Theoremprodmodclem2a 11517* Lemma for prodmodc 11519. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))    &   𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝐾𝑗) / 𝑘𝐵, 1))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)    &   (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))       (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑁))
 
Theoremprodmodclem2 11518* Lemma for prodmodc 11519. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 13-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))       ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
 
Theoremprodmodc 11519* A product has at most one limit. (Contributed by Scott Fenton, 4-Dec-2017.) (Modified by Jim Kingdon, 14-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))       (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))))
 
Theoremzproddc 11520* Series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 5-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))    &   (𝜑𝐴𝑍)    &   (𝜑 → ∀𝑗𝑍 DECID 𝑗𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹)))
 
Theoremiprodap 11521* Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑘𝑍 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹)))
 
Theoremzprodap0 11522* Nonzero series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 6-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑋 # 0)    &   (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)    &   (𝜑 → ∀𝑗𝑍 DECID 𝑗𝐴)    &   (𝜑𝐴𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑘𝐴 𝐵 = 𝑋)
 
Theoremiprodap0 11523* Nonzero series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 6-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑋 # 0)    &   (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑘𝑍 𝐵 = 𝑋)
 
4.8.10.4  Finite products
 
Theoremfprodseq 11524* The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017.) (Revised by Jim Kingdon, 15-Jul-2024.)
(𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)       (𝜑 → ∏𝑘𝐴 𝐵 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))
 
Theoremfprodntrivap 11525* A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   (𝜑𝐴 ⊆ (𝑀...𝑁))       (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
 
Theoremprod0 11526 A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017.)
𝑘 ∈ ∅ 𝐴 = 1
 
Theoremprod1dc 11527* Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
(((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
 
Theoremprodfct 11528* A lemma to facilitate conversions from the function form to the class-variable form of a product. (Contributed by Scott Fenton, 7-Dec-2017.)
(∀𝑘𝐴 𝐵 ∈ ℂ → ∏𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = ∏𝑘𝐴 𝐵)
 
Theoremfprodf1o 11529* Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017.)
(𝑘 = 𝐺𝐵 = 𝐷)    &   (𝜑𝐶 ∈ Fin)    &   (𝜑𝐹:𝐶1-1-onto𝐴)    &   ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷)
 
Theoremprodssdc 11530* Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon, 6-Aug-2024.)
(𝜑𝐴𝐵)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))    &   (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)    &   (𝜑𝐵 ⊆ (ℤ𝑀))    &   (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)       (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
 
Theoremfprodssdc 11531* Change the index set to a subset in a finite sum. (Contributed by Scott Fenton, 16-Dec-2017.)
(𝜑𝐴𝐵)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)    &   ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)    &   (𝜑𝐵 ∈ Fin)       (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
 
Theoremfprodmul 11532* The product of two finite products. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)       (𝜑 → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
 
Theoremprodsnf 11533* A product of a singleton is the term. A version of prodsn 11534 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝐵    &   (𝑘 = 𝑀𝐴 = 𝐵)       ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
 
Theoremprodsn 11534* A product of a singleton is the term. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝑘 = 𝑀𝐴 = 𝐵)       ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
 
Theoremfprod1 11535* A finite product of only one term is the term itself. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝑘 = 𝑀𝐴 = 𝐵)       ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = 𝐵)
 
Theoremclimprod1 11536 The limit of a product over one. (Contributed by Scott Fenton, 15-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)       (𝜑 → seq𝑀( · , (𝑍 × {1})) ⇝ 1)
 
Theoremfprodsplitdc 11537* Split a finite product into two parts. New proofs should use fprodsplit 11538 which is the same but with one fewer hypothesis. (Contributed by Scott Fenton, 16-Dec-2017.) (New usage is discouraged.)
(𝜑 → (𝐴𝐵) = ∅)    &   (𝜑𝑈 = (𝐴𝐵))    &   (𝜑𝑈 ∈ Fin)    &   (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐴)    &   ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)       (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
 
Theoremfprodsplit 11538* Split a finite product into two parts. (Contributed by Scott Fenton, 16-Dec-2017.)
(𝜑 → (𝐴𝐵) = ∅)    &   (𝜑𝑈 = (𝐴𝐵))    &   (𝜑𝑈 ∈ Fin)    &   ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)       (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
 
Theoremfprodm1 11539* Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   (𝑘 = 𝑁𝐴 = 𝐵)       (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵))
 
Theoremfprod1p 11540* Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   (𝑘 = 𝑀𝐴 = 𝐵)       (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
 
Theoremfprodp1 11541* Multiply in the last term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)    &   (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵)       (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · 𝐵))
 
Theoremfprodm1s 11542* Separate out the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)       (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝑁 / 𝑘𝐴))
 
Theoremfprodp1s 11543* Multiply in the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)       (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · (𝑁 + 1) / 𝑘𝐴))
 
Theoremprodsns 11544* A product of the singleton is the term. (Contributed by Scott Fenton, 25-Dec-2017.)
((𝑀𝑉𝑀 / 𝑘𝐴 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝑀 / 𝑘𝐴)
 
Theoremfprodunsn 11545* Multiply in an additional term in a finite product. See also fprodsplitsn 11574 which is the same but with a 𝑘𝜑 hypothesis in place of the distinct variable condition between 𝜑 and 𝑘. (Contributed by Jim Kingdon, 16-Aug-2024.)
𝑘𝐷    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐵𝑉)    &   (𝜑 → ¬ 𝐵𝐴)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝑘 = 𝐵𝐶 = 𝐷)       (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · 𝐷))
 
Theoremfprodcl2lem 11546* Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.) (Revised by Jim Kingdon, 17-Aug-2024.)
(𝜑𝑆 ⊆ ℂ)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵𝑆)    &   (𝜑𝐴 ≠ ∅)       (𝜑 → ∏𝑘𝐴 𝐵𝑆)
 
Theoremfprodcllem 11547* Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝜑𝑆 ⊆ ℂ)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵𝑆)    &   (𝜑 → 1 ∈ 𝑆)       (𝜑 → ∏𝑘𝐴 𝐵𝑆)
 
Theoremfprodcl 11548* Closure of a finite product of complex numbers. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℂ)
 
Theoremfprodrecl 11549* Closure of a finite product of real numbers. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)       (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℝ)
 
Theoremfprodzcl 11550* Closure of a finite product of integers. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)       (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℤ)
 
Theoremfprodnncl 11551* Closure of a finite product of positive integers. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ)       (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℕ)
 
Theoremfprodrpcl 11552* Closure of a finite product of positive reals. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ+)       (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℝ+)
 
Theoremfprodnn0cl 11553* Closure of a finite product of nonnegative integers. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ0)       (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℕ0)
 
Theoremfprodcllemf 11554* Finite product closure lemma. A version of fprodcllem 11547 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝑆 ⊆ ℂ)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵𝑆)    &   (𝜑 → 1 ∈ 𝑆)       (𝜑 → ∏𝑘𝐴 𝐵𝑆)
 
Theoremfprodreclf 11555* Closure of a finite product of real numbers. A version of fprodrecl 11549 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)       (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℝ)
 
Theoremfprodfac 11556* Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.)
(𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
 
Theoremfprodabs 11557* The absolute value of a finite product. (Contributed by Scott Fenton, 25-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)       (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
 
Theoremfprodeq0 11558* Any finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   ((𝜑𝑘 = 𝑁) → 𝐴 = 0)       ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = 0)
 
Theoremfprodshft 11559* Shift the index of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   (𝑗 = (𝑘𝐾) → 𝐴 = 𝐵)       (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)𝐴 = ∏𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵)
 
Theoremfprodrev 11560* Reversal of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   (𝑗 = (𝐾𝑘) → 𝐴 = 𝐵)       (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)𝐴 = ∏𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))𝐵)
 
Theoremfprodconst 11561* The product of constant terms (𝑘 is not free in 𝐵). (Contributed by Scott Fenton, 12-Jan-2018.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
 
Theoremfprodap0 11562* A finite product of nonzero terms is nonzero. (Contributed by Scott Fenton, 15-Jan-2018.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐵 # 0)       (𝜑 → ∏𝑘𝐴 𝐵 # 0)
 
Theoremfprod2dlemstep 11563* Lemma for fprod2d 11564- induction step. (Contributed by Scott Fenton, 30-Jan-2018.)
(𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)    &   ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)    &   (𝜑 → ¬ 𝑦𝑥)    &   (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴)    &   (𝜑𝑥 ∈ Fin)    &   (𝜓 ↔ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)       ((𝜑𝜓) → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
 
Theoremfprod2d 11564* Write a double product as a product over a two-dimensional region. Compare fsum2d 11376. (Contributed by Scott Fenton, 30-Jan-2018.)
(𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)    &   ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)       (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
 
Theoremfprodxp 11565* Combine two products into a single product over the cartesian product. (Contributed by Scott Fenton, 1-Feb-2018.)
(𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐵 ∈ Fin)    &   ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)       (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 ∈ (𝐴 × 𝐵)𝐷)
 
Theoremfprodcnv 11566* Transform a product region using the converse operation. (Contributed by Scott Fenton, 1-Feb-2018.)
(𝑥 = ⟨𝑗, 𝑘⟩ → 𝐵 = 𝐷)    &   (𝑦 = ⟨𝑘, 𝑗⟩ → 𝐶 = 𝐷)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑 → Rel 𝐴)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑥𝐴 𝐵 = ∏𝑦 𝐴𝐶)
 
Theoremfprodcom2fi 11567* Interchange order of multiplication. Note that 𝐵(𝑗) and 𝐷(𝑘) are not necessarily constant expressions. (Contributed by Scott Fenton, 1-Feb-2018.) (Proof shortened by JJ, 2-Aug-2021.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐶 ∈ Fin)    &   ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)    &   ((𝜑𝑘𝐶) → 𝐷 ∈ Fin)    &   (𝜑 → ((𝑗𝐴𝑘𝐵) ↔ (𝑘𝐶𝑗𝐷)))    &   ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐸 ∈ ℂ)       (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐸 = ∏𝑘𝐶𝑗𝐷 𝐸)
 
Theoremfprodcom 11568* Interchange product order. (Contributed by Scott Fenton, 2-Feb-2018.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐵 ∈ Fin)    &   ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)       (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑘𝐵𝑗𝐴 𝐶)
 
Theoremfprod0diagfz 11569* Two ways to express "the product of 𝐴(𝑗, 𝑘) over the triangular region 𝑀𝑗, 𝑀𝑘, 𝑗 + 𝑘𝑁. Compare fisum0diag 11382. (Contributed by Scott Fenton, 2-Feb-2018.)
((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗)))) → 𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → ∏𝑗 ∈ (0...𝑁)∏𝑘 ∈ (0...(𝑁𝑗))𝐴 = ∏𝑘 ∈ (0...𝑁)∏𝑗 ∈ (0...(𝑁𝑘))𝐴)
 
Theoremfprodrec 11570* The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐵 # 0)       (𝜑 → ∏𝑘𝐴 (1 / 𝐵) = (1 / ∏𝑘𝐴 𝐵))
 
Theoremfproddivap 11571* The quotient of two finite products. (Contributed by Scott Fenton, 15-Jan-2018.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐶 # 0)       (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
 
Theoremfproddivapf 11572* The quotient of two finite products. A version of fproddivap 11571 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐶 # 0)       (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
 
Theoremfprodsplitf 11573* Split a finite product into two parts. A version of fprodsplit 11538 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑 → (𝐴𝐵) = ∅)    &   (𝜑𝑈 = (𝐴𝐵))    &   (𝜑𝑈 ∈ Fin)    &   ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)       (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
 
Theoremfprodsplitsn 11574* Separate out a term in a finite product. See also fprodunsn 11545 which is the same but with a distinct variable condition in place of 𝑘𝜑. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   𝑘𝐷    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐵𝑉)    &   (𝜑 → ¬ 𝐵𝐴)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   (𝑘 = 𝐵𝐶 = 𝐷)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · 𝐷))
 
Theoremfprodsplit1f 11575* Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝑘𝐷)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑𝐶𝐴)    &   ((𝜑𝑘 = 𝐶) → 𝐵 = 𝐷)       (𝜑 → ∏𝑘𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
 
Theoremfprodclf 11576* Closure of a finite product of complex numbers. A version of fprodcl 11548 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℂ)
 
Theoremfprodap0f 11577* A finite product of terms apart from zero is apart from zero. A version of fprodap0 11562 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by Jim Kingdon, 30-Aug-2024.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐵 # 0)       (𝜑 → ∏𝑘𝐴 𝐵 # 0)
 
Theoremfprodge0 11578* If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 0 ≤ 𝐵)       (𝜑 → 0 ≤ ∏𝑘𝐴 𝐵)
 
Theoremfprodeq0g 11579* Any finite product containing a zero term is itself zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑𝐶𝐴)    &   ((𝜑𝑘 = 𝐶) → 𝐵 = 0)       (𝜑 → ∏𝑘𝐴 𝐵 = 0)
 
Theoremfprodge1 11580* If all of the terms of a finite product are greater than or equal to 1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 1 ≤ 𝐵)       (𝜑 → 1 ≤ ∏𝑘𝐴 𝐵)
 
Theoremfprodle 11581* If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 0 ≤ 𝐵)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 𝐵𝐶)       (𝜑 → ∏𝑘𝐴 𝐵 ≤ ∏𝑘𝐴 𝐶)
 
Theoremfprodmodd 11582* If all factors of two finite products are equal modulo 𝑀, the products are equal modulo 𝑀. (Contributed by AV, 7-Jul-2021.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℤ)    &   (𝜑𝑀 ∈ ℕ)    &   ((𝜑𝑘𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀))       (𝜑 → (∏𝑘𝐴 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀))
 
4.9  Elementary trigonometry
 
4.9.1  The exponential, sine, and cosine functions
 
Syntaxce 11583 Extend class notation to include the exponential function.
class exp
 
Syntaxceu 11584 Extend class notation to include Euler's constant e = 2.71828....
class e
 
Syntaxcsin 11585 Extend class notation to include the sine function.
class sin
 
Syntaxccos 11586 Extend class notation to include the cosine function.
class cos
 
Syntaxctan 11587 Extend class notation to include the tangent function.
class tan
 
Syntaxcpi 11588 Extend class notation to include the constant pi, π = 3.14159....
class π
 
Definitiondf-ef 11589* Define the exponential function. Its value at the complex number 𝐴 is (exp‘𝐴) and is called the "exponential of 𝐴"; see efval 11602. (Contributed by NM, 14-Mar-2005.)
exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘)))
 
Definitiondf-e 11590 Define Euler's constant e = 2.71828.... (Contributed by NM, 14-Mar-2005.)
e = (exp‘1)
 
Definitiondf-sin 11591 Define the sine function. (Contributed by NM, 14-Mar-2005.)
sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
 
Definitiondf-cos 11592 Define the cosine function. (Contributed by NM, 14-Mar-2005.)
cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
 
Definitiondf-tan 11593 Define the tangent function. We define it this way for cmpt 4043, which requires the form (𝑥𝐴𝐵). (Contributed by Mario Carneiro, 14-Mar-2014.)
tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))
 
Definitiondf-pi 11594 Define the constant pi, π = 3.14159..., which is the smallest positive number whose sine is zero. Definition of π in [Gleason] p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV, 14-Sep-2020.)
π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
 
Theoremeftcl 11595 Closure of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 11-Sep-2007.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) / (!‘𝐾)) ∈ ℂ)
 
Theoremreeftcl 11596 The terms of the series expansion of the exponential function at a real number are real. (Contributed by Paul Chapman, 15-Jan-2008.)
((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) / (!‘𝐾)) ∈ ℝ)
 
Theoremeftabs 11597 The absolute value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 23-Nov-2007.)
((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (abs‘((𝐴𝐾) / (!‘𝐾))) = (((abs‘𝐴)↑𝐾) / (!‘𝐾)))
 
Theoremeftvalcn 11598* The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 8-Dec-2022.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹𝑁) = ((𝐴𝑁) / (!‘𝑁)))
 
Theoremefcllemp 11599* Lemma for efcl 11605. The series that defines the exponential function converges. The ratio test cvgratgt0 11474 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐾 ∈ ℕ)    &   (𝜑 → (2 · (abs‘𝐴)) < 𝐾)       (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
 
Theoremefcllem 11600* Lemma for efcl 11605. The series that defines the exponential function converges. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))       (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >