Theorem List for Intuitionistic Logic Explorer - 11501-11600 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | cbvprodi 11501* |
Change bound variable in a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
⊢ Ⅎ𝑘𝐵
& ⊢ Ⅎ𝑗𝐶
& ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) ⇒ ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
|
Theorem | prodeq1i 11502* |
Equality inference for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
⊢ 𝐴 = 𝐵 ⇒ ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶 |
|
Theorem | prodeq2i 11503* |
Equality inference for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
⊢ (𝑘 ∈ 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
|
Theorem | prodeq12i 11504* |
Equality inference for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
⊢ 𝐴 = 𝐵
& ⊢ (𝑘 ∈ 𝐴 → 𝐶 = 𝐷) ⇒ ⊢ ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐷 |
|
Theorem | prodeq1d 11505* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
|
Theorem | prodeq2d 11506* |
Equality deduction for product. Note that unlike prodeq2dv 11507, 𝑘
may occur in 𝜑. (Contributed by Scott Fenton,
4-Dec-2017.)
|
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) |
|
Theorem | prodeq2dv 11507* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) |
|
Theorem | prodeq2sdv 11508* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) |
|
Theorem | 2cprodeq2dv 11509* |
Equality deduction for double product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐷) |
|
Theorem | prodeq12dv 11510* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
⊢ (𝜑 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐷) |
|
Theorem | prodeq12rdv 11511* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
⊢ (𝜑 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐷) |
|
Theorem | prodrbdclem 11512* |
Lemma for prodrbdc 11515. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 4-Apr-2024.)
|
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ ((𝜑 ∧ 𝐴 ⊆
(ℤ≥‘𝑁)) → (seq𝑀( · , 𝐹) ↾
(ℤ≥‘𝑁)) = seq𝑁( · , 𝐹)) |
|
Theorem | fproddccvg 11513* |
The sequence of partial products of a finite product converges to
the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
|
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq𝑀( · , 𝐹)‘𝑁)) |
|
Theorem | prodrbdclem2 11514* |
Lemma for prodrbdc 11515. (Contributed by Scott Fenton,
4-Dec-2017.)
|
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑁)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID
𝑘 ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶)) |
|
Theorem | prodrbdc 11515* |
Rebase the starting point of a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑁)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID
𝑘 ∈ 𝐴) ⇒ ⊢ (𝜑 → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶)) |
|
Theorem | prodmodclem3 11516* |
Lemma for prodmodc 11519. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 11-Apr-2024.)
|
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) & ⊢ 𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝐾‘𝑗) / 𝑘⦌𝐵, 1)) & ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) & ⊢ (𝜑 → 𝑓:(1...𝑀)–1-1-onto→𝐴)
& ⊢ (𝜑 → 𝐾:(1...𝑁)–1-1-onto→𝐴) ⇒ ⊢ (𝜑 → (seq1( · , 𝐺)‘𝑀) = (seq1( · , 𝐻)‘𝑁)) |
|
Theorem | prodmodclem2a 11517* |
Lemma for prodmodc 11519. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 11-Apr-2024.)
|
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) & ⊢ 𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝐾‘𝑗) / 𝑘⦌𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑓:(1...𝑁)–1-1-onto→𝐴)
& ⊢ (𝜑 → 𝐾 Isom < , <
((1...(♯‘𝐴)),
𝐴)) ⇒ ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑁)) |
|
Theorem | prodmodclem2 11518* |
Lemma for prodmodc 11519. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 13-Apr-2024.)
|
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) ⇒ ⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧)) |
|
Theorem | prodmodc 11519* |
A product has at most one limit. (Contributed by Scott Fenton,
4-Dec-2017.) (Modified by Jim Kingdon, 14-Apr-2024.)
|
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ⦋(𝑓‘𝑗) / 𝑘⦌𝐵, 1)) ⇒ ⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , 𝐺)‘𝑚)))) |
|
Theorem | zproddc 11520* |
Series product with index set a subset of the upper integers.
(Contributed by Scott Fenton, 5-Dec-2017.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
& ⊢ (𝜑 → 𝐴 ⊆ 𝑍)
& ⊢ (𝜑 → ∀𝑗 ∈ 𝑍 DECID 𝑗 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹))) |
|
Theorem | iprodap 11521* |
Series product with an upper integer index set (i.e. an infinite
product.) (Contributed by Scott Fenton, 5-Dec-2017.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹))) |
|
Theorem | zprodap0 11522* |
Nonzero series product with index set a subset of the upper integers.
(Contributed by Scott Fenton, 6-Dec-2017.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑋 # 0) & ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
& ⊢ (𝜑 → ∀𝑗 ∈ 𝑍 DECID 𝑗 ∈ 𝐴)
& ⊢ (𝜑 → 𝐴 ⊆ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 𝑋) |
|
Theorem | iprodap0 11523* |
Nonzero series product with an upper integer index set (i.e. an
infinite product.) (Contributed by Scott Fenton, 6-Dec-2017.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑋 # 0) & ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐵 = 𝑋) |
|
4.8.10.4 Finite products
|
|
Theorem | fprodseq 11524* |
The value of a product over a nonempty finite set. (Contributed by
Scott Fenton, 6-Dec-2017.) (Revised by Jim Kingdon, 15-Jul-2024.)
|
⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶)
& ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀)) |
|
Theorem | fprodntrivap 11525* |
A non-triviality lemma for finite sequences. (Contributed by Scott
Fenton, 16-Dec-2017.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ 𝑍 ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) |
|
Theorem | prod0 11526 |
A product over the empty set is one. (Contributed by Scott Fenton,
5-Dec-2017.)
|
⊢ ∏𝑘 ∈ ∅ 𝐴 = 1 |
|
Theorem | prod1dc 11527* |
Any product of one over a valid set is one. (Contributed by Scott
Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
|
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) ∨ 𝐴 ∈ Fin) → ∏𝑘 ∈ 𝐴 1 = 1) |
|
Theorem | prodfct 11528* |
A lemma to facilitate conversions from the function form to the
class-variable form of a product. (Contributed by Scott Fenton,
7-Dec-2017.)
|
⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ∏𝑗 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ∏𝑘 ∈ 𝐴 𝐵) |
|
Theorem | fprodf1o 11529* |
Re-index a finite product using a bijection. (Contributed by Scott
Fenton, 7-Dec-2017.)
|
⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷)
& ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴)
& ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑛 ∈ 𝐶 𝐷) |
|
Theorem | prodssdc 11530* |
Change the index set to a subset in an upper integer product.
(Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon,
6-Aug-2024.)
|
⊢ (𝜑 → 𝐴 ⊆ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ∃𝑛 ∈ (ℤ≥‘𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ≥‘𝑀) ↦ if(𝑘 ∈ 𝐵, 𝐶, 1))) ⇝ 𝑦))
& ⊢ (𝜑 → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 1) & ⊢ (𝜑 → 𝐵 ⊆
(ℤ≥‘𝑀)) & ⊢ (𝜑 → ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
|
Theorem | fprodssdc 11531* |
Change the index set to a subset in a finite sum. (Contributed by Scott
Fenton, 16-Dec-2017.)
|
⊢ (𝜑 → 𝐴 ⊆ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 1) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
|
Theorem | fprodmul 11532* |
The product of two finite products. (Contributed by Scott Fenton,
14-Dec-2017.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 · 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 · ∏𝑘 ∈ 𝐴 𝐶)) |
|
Theorem | prodsnf 11533* |
A product of a singleton is the term. A version of prodsn 11534 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝐵
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵) |
|
Theorem | prodsn 11534* |
A product of a singleton is the term. (Contributed by Scott Fenton,
14-Dec-2017.)
|
⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵) |
|
Theorem | fprod1 11535* |
A finite product of only one term is the term itself. (Contributed by
Scott Fenton, 14-Dec-2017.)
|
⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = 𝐵) |
|
Theorem | climprod1 11536 |
The limit of a product over one. (Contributed by Scott Fenton,
15-Dec-2017.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ)
⇒ ⊢ (𝜑 → seq𝑀( · , (𝑍 × {1})) ⇝ 1) |
|
Theorem | fprodsplitdc 11537* |
Split a finite product into two parts. New proofs should use
fprodsplit 11538 which is the same but with one fewer
hypothesis.
(Contributed by Scott Fenton, 16-Dec-2017.)
(New usage is discouraged.)
|
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ (𝜑 → ∀𝑗 ∈ 𝑈 DECID 𝑗 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑈 𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶)) |
|
Theorem | fprodsplit 11538* |
Split a finite product into two parts. (Contributed by Scott Fenton,
16-Dec-2017.)
|
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑈 𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶)) |
|
Theorem | fprodm1 11539* |
Separate out the last term in a finite product. (Contributed by Scott
Fenton, 16-Dec-2017.)
|
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵)) |
|
Theorem | fprod1p 11540* |
Separate out the first term in a finite product. (Contributed by Scott
Fenton, 24-Dec-2017.)
|
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴)) |
|
Theorem | fprodp1 11541* |
Multiply in the last term in a finite product. (Contributed by Scott
Fenton, 24-Dec-2017.)
|
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · 𝐵)) |
|
Theorem | fprodm1s 11542* |
Separate out the last term in a finite product. (Contributed by Scott
Fenton, 27-Dec-2017.)
|
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ⦋𝑁 / 𝑘⦌𝐴)) |
|
Theorem | fprodp1s 11543* |
Multiply in the last term in a finite product. (Contributed by Scott
Fenton, 27-Dec-2017.)
|
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ⦋(𝑁 + 1) / 𝑘⦌𝐴)) |
|
Theorem | prodsns 11544* |
A product of the singleton is the term. (Contributed by Scott Fenton,
25-Dec-2017.)
|
⊢ ((𝑀 ∈ 𝑉 ∧ ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
|
Theorem | fprodunsn 11545* |
Multiply in an additional term in a finite product. See also
fprodsplitsn 11574 which is the same but with a Ⅎ𝑘𝜑 hypothesis in
place of the distinct variable condition between 𝜑 and 𝑘.
(Contributed by Jim Kingdon, 16-Aug-2024.)
|
⊢ Ⅎ𝑘𝐷
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
|
Theorem | fprodcl2lem 11546* |
Finite product closure lemma. (Contributed by Scott Fenton,
14-Dec-2017.) (Revised by Jim Kingdon, 17-Aug-2024.)
|
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ≠ ∅)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
|
Theorem | fprodcllem 11547* |
Finite product closure lemma. (Contributed by Scott Fenton,
14-Dec-2017.)
|
⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 1 ∈ 𝑆) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
|
Theorem | fprodcl 11548* |
Closure of a finite product of complex numbers. (Contributed by Scott
Fenton, 14-Dec-2017.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
|
Theorem | fprodrecl 11549* |
Closure of a finite product of real numbers. (Contributed by Scott
Fenton, 14-Dec-2017.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ ℝ) |
|
Theorem | fprodzcl 11550* |
Closure of a finite product of integers. (Contributed by Scott
Fenton, 14-Dec-2017.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ ℤ) |
|
Theorem | fprodnncl 11551* |
Closure of a finite product of positive integers. (Contributed by
Scott Fenton, 14-Dec-2017.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℕ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ ℕ) |
|
Theorem | fprodrpcl 11552* |
Closure of a finite product of positive reals. (Contributed by Scott
Fenton, 14-Dec-2017.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈
ℝ+) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈
ℝ+) |
|
Theorem | fprodnn0cl 11553* |
Closure of a finite product of nonnegative integers. (Contributed by
Scott Fenton, 14-Dec-2017.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈
ℕ0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈
ℕ0) |
|
Theorem | fprodcllemf 11554* |
Finite product closure lemma. A version of fprodcllem 11547 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 1 ∈ 𝑆) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
|
Theorem | fprodreclf 11555* |
Closure of a finite product of real numbers. A version of fprodrecl 11549
using bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ ℝ) |
|
Theorem | fprodfac 11556* |
Factorial using product notation. (Contributed by Scott Fenton,
15-Dec-2017.)
|
⊢ (𝐴 ∈ ℕ0 →
(!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
|
Theorem | fprodabs 11557* |
The absolute value of a finite product. (Contributed by Scott Fenton,
25-Dec-2017.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴)) |
|
Theorem | fprodeq0 11558* |
Any finite product containing a zero term is itself zero. (Contributed
by Scott Fenton, 27-Dec-2017.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 = 𝑁) → 𝐴 = 0) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = 0) |
|
Theorem | fprodshft 11559* |
Shift the index of a finite product. (Contributed by Scott Fenton,
5-Jan-2018.)
|
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)𝐴 = ∏𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵) |
|
Theorem | fprodrev 11560* |
Reversal of a finite product. (Contributed by Scott Fenton,
5-Jan-2018.)
|
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑗 = (𝐾 − 𝑘) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)𝐴 = ∏𝑘 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝐵) |
|
Theorem | fprodconst 11561* |
The product of constant terms (𝑘 is not free in 𝐵).
(Contributed by Scott Fenton, 12-Jan-2018.)
|
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ 𝐴 𝐵 = (𝐵↑(♯‘𝐴))) |
|
Theorem | fprodap0 11562* |
A finite product of nonzero terms is nonzero. (Contributed by Scott
Fenton, 15-Jan-2018.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 # 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 # 0) |
|
Theorem | fprod2dlemstep 11563* |
Lemma for fprod2d 11564- induction step. (Contributed by Scott
Fenton,
30-Jan-2018.)
|
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ¬ 𝑦 ∈ 𝑥)
& ⊢ (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
& ⊢ (𝜑 → 𝑥 ∈ Fin) & ⊢ (𝜓 ↔ ∏𝑗 ∈ 𝑥 ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘 ∈ 𝐵 𝐶 = ∏𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷) |
|
Theorem | fprod2d 11564* |
Write a double product as a product over a two-dimensional region.
Compare fsum2d 11376. (Contributed by Scott Fenton,
30-Jan-2018.)
|
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐷) |
|
Theorem | fprodxp 11565* |
Combine two products into a single product over the cartesian product.
(Contributed by Scott Fenton, 1-Feb-2018.)
|
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑧 ∈ (𝐴 × 𝐵)𝐷) |
|
Theorem | fprodcnv 11566* |
Transform a product region using the converse operation. (Contributed
by Scott Fenton, 1-Feb-2018.)
|
⊢ (𝑥 = 〈𝑗, 𝑘〉 → 𝐵 = 𝐷)
& ⊢ (𝑦 = 〈𝑘, 𝑗〉 → 𝐶 = 𝐷)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → Rel 𝐴)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑥 ∈ 𝐴 𝐵 = ∏𝑦 ∈ ◡ 𝐴𝐶) |
|
Theorem | fprodcom2fi 11567* |
Interchange order of multiplication. Note that 𝐵(𝑗) and
𝐷(𝑘) are not necessarily constant
expressions. (Contributed by
Scott Fenton, 1-Feb-2018.) (Proof shortened by JJ, 2-Aug-2021.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐷 ∈ Fin) & ⊢ (𝜑 → ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) ↔ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷))) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐸 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐸 = ∏𝑘 ∈ 𝐶 ∏𝑗 ∈ 𝐷 𝐸) |
|
Theorem | fprodcom 11568* |
Interchange product order. (Contributed by Scott Fenton,
2-Feb-2018.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑘 ∈ 𝐵 ∏𝑗 ∈ 𝐴 𝐶) |
|
Theorem | fprod0diagfz 11569* |
Two ways to express "the product of 𝐴(𝑗, 𝑘) over the triangular
region 𝑀 ≤ 𝑗, 𝑀 ≤ 𝑘, 𝑗 + 𝑘 ≤ 𝑁. Compare
fisum0diag 11382. (Contributed by Scott Fenton, 2-Feb-2018.)
|
⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → ∏𝑗 ∈ (0...𝑁)∏𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = ∏𝑘 ∈ (0...𝑁)∏𝑗 ∈ (0...(𝑁 − 𝑘))𝐴) |
|
Theorem | fprodrec 11570* |
The finite product of reciprocals is the reciprocal of the product.
(Contributed by Jim Kingdon, 28-Aug-2024.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 # 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝐴 𝐵)) |
|
Theorem | fproddivap 11571* |
The quotient of two finite products. (Contributed by Scott Fenton,
15-Jan-2018.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 # 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
|
Theorem | fproddivapf 11572* |
The quotient of two finite products. A version of fproddivap 11571 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 # 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
|
Theorem | fprodsplitf 11573* |
Split a finite product into two parts. A version of fprodsplit 11538 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑈 𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶)) |
|
Theorem | fprodsplitsn 11574* |
Separate out a term in a finite product. See also fprodunsn 11545 which is
the same but with a distinct variable condition in place of
Ⅎ𝑘𝜑. (Contributed by Glauco Siliprandi,
5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ Ⅎ𝑘𝐷
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷)
& ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
|
Theorem | fprodsplit1f 11575* |
Separate out a term in a finite product. (Contributed by Glauco
Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → Ⅎ𝑘𝐷)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
|
Theorem | fprodclf 11576* |
Closure of a finite product of complex numbers. A version of fprodcl 11548
using bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
|
Theorem | fprodap0f 11577* |
A finite product of terms apart from zero is apart from zero. A version
of fprodap0 11562 using bound-variable hypotheses instead of
distinct
variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(Revised by Jim Kingdon, 30-Aug-2024.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 # 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 # 0) |
|
Theorem | fprodge0 11578* |
If all the terms of a finite product are nonnegative, so is the product.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
|
Theorem | fprodeq0g 11579* |
Any finite product containing a zero term is itself zero. (Contributed
by Glauco Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 0) |
|
Theorem | fprodge1 11580* |
If all of the terms of a finite product are greater than or equal to
1, so is the product. (Contributed by Glauco
Siliprandi,
5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) ⇒ ⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
|
Theorem | fprodle 11581* |
If all the terms of two finite products are nonnegative and compare, so
do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ≤ ∏𝑘 ∈ 𝐴 𝐶) |
|
Theorem | fprodmodd 11582* |
If all factors of two finite products are equal modulo 𝑀, the
products are equal modulo 𝑀. (Contributed by AV, 7-Jul-2021.)
|
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀)) ⇒ ⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝐴 𝐶 mod 𝑀)) |
|
4.9 Elementary trigonometry
|
|
4.9.1 The exponential, sine, and cosine
functions
|
|
Syntax | ce 11583 |
Extend class notation to include the exponential function.
|
class exp |
|
Syntax | ceu 11584 |
Extend class notation to include Euler's constant e =
2.71828....
|
class e |
|
Syntax | csin 11585 |
Extend class notation to include the sine function.
|
class sin |
|
Syntax | ccos 11586 |
Extend class notation to include the cosine function.
|
class cos |
|
Syntax | ctan 11587 |
Extend class notation to include the tangent function.
|
class tan |
|
Syntax | cpi 11588 |
Extend class notation to include the constant pi, π
= 3.14159....
|
class π |
|
Definition | df-ef 11589* |
Define the exponential function. Its value at the complex number 𝐴
is (exp‘𝐴) and is called the "exponential
of 𝐴"; see
efval 11602. (Contributed by NM, 14-Mar-2005.)
|
⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0
((𝑥↑𝑘) / (!‘𝑘))) |
|
Definition | df-e 11590 |
Define Euler's constant e = 2.71828.... (Contributed
by NM,
14-Mar-2005.)
|
⊢ e = (exp‘1) |
|
Definition | df-sin 11591 |
Define the sine function. (Contributed by NM, 14-Mar-2005.)
|
⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) −
(exp‘(-i · 𝑥))) / (2 · i))) |
|
Definition | df-cos 11592 |
Define the cosine function. (Contributed by NM, 14-Mar-2005.)
|
⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) +
(exp‘(-i · 𝑥))) / 2)) |
|
Definition | df-tan 11593 |
Define the tangent function. We define it this way for cmpt 4043,
which
requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by Mario
Carneiro, 14-Mar-2014.)
|
⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦
((sin‘𝑥) /
(cos‘𝑥))) |
|
Definition | df-pi 11594 |
Define the constant pi, π = 3.14159..., which is the
smallest
positive number whose sine is zero. Definition of π in [Gleason]
p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV,
14-Sep-2020.)
|
⊢ π = inf((ℝ+ ∩ (◡sin “ {0})), ℝ, <
) |
|
Theorem | eftcl 11595 |
Closure of a term in the series expansion of the exponential function.
(Contributed by Paul Chapman, 11-Sep-2007.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℂ) |
|
Theorem | reeftcl 11596 |
The terms of the series expansion of the exponential function at a real
number are real. (Contributed by Paul Chapman, 15-Jan-2008.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℝ) |
|
Theorem | eftabs 11597 |
The absolute value of a term in the series expansion of the exponential
function. (Contributed by Paul Chapman, 23-Nov-2007.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) →
(abs‘((𝐴↑𝐾) / (!‘𝐾))) = (((abs‘𝐴)↑𝐾) / (!‘𝐾))) |
|
Theorem | eftvalcn 11598* |
The value of a term in the series expansion of the exponential function.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) |
|
Theorem | efcllemp 11599* |
Lemma for efcl 11605. The series that defines the exponential
function
converges. The ratio test cvgratgt0 11474 is used to show convergence.
(Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → (2 ·
(abs‘𝐴)) < 𝐾)
⇒ ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) |
|
Theorem | efcllem 11600* |
Lemma for efcl 11605. The series that defines the exponential
function
converges. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝
) |