Theorem List for Intuitionistic Logic Explorer - 11501-11600 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | recn2 11501* |
The real part function is continuous. (Contributed by Mario Carneiro,
9-Feb-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((ℜ‘𝑧) − (ℜ‘𝐴))) < 𝑥)) |
| |
| Theorem | imcn2 11502* |
The imaginary part function is continuous. (Contributed by Mario
Carneiro, 9-Feb-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((ℑ‘𝑧) − (ℑ‘𝐴))) < 𝑥)) |
| |
| Theorem | climcn1lem 11503* |
The limit of a continuous function, theorem form. (Contributed by
Mario Carneiro, 9-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ 𝐻:ℂ⟶ℂ & ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ ∃𝑦 ∈
ℝ+ ∀𝑧 ∈ ℂ ((abs‘(𝑧 − 𝐴)) < 𝑦 → (abs‘((𝐻‘𝑧) − (𝐻‘𝐴))) < 𝑥))
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐻‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐻‘𝐴)) |
| |
| Theorem | climabs 11504* |
Limit of the absolute value of a sequence. Proposition 12-2.4(c) of
[Gleason] p. 172. (Contributed by NM,
7-Jun-2006.) (Revised by Mario
Carneiro, 9-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (abs‘𝐴)) |
| |
| Theorem | climcj 11505* |
Limit of the complex conjugate of a sequence. Proposition 12-2.4(c)
of [Gleason] p. 172. (Contributed by
NM, 7-Jun-2006.) (Revised by
Mario Carneiro, 9-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (∗‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (∗‘𝐴)) |
| |
| Theorem | climre 11506* |
Limit of the real part of a sequence. Proposition 12-2.4(c) of
[Gleason] p. 172. (Contributed by NM,
7-Jun-2006.) (Revised by Mario
Carneiro, 9-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (ℜ‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (ℜ‘𝐴)) |
| |
| Theorem | climim 11507* |
Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of
[Gleason] p. 172. (Contributed by NM,
7-Jun-2006.) (Revised by Mario
Carneiro, 9-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (ℑ‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (ℑ‘𝐴)) |
| |
| Theorem | climrecl 11508* |
The limit of a convergent real sequence is real. Corollary 12-2.5 of
[Gleason] p. 172. (Contributed by NM,
10-Sep-2005.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ)
⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| |
| Theorem | climge0 11509* |
A nonnegative sequence converges to a nonnegative number. (Contributed
by NM, 11-Sep-2005.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 0 ≤ 𝐴) |
| |
| Theorem | climadd 11510* |
Limit of the sum of two converging sequences. Proposition 12-2.1(a)
of [Gleason] p. 168. (Contributed
by NM, 24-Sep-2005.) (Proof
shortened by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐻 ∈ 𝑋)
& ⊢ (𝜑 → 𝐺 ⇝ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 + 𝐵)) |
| |
| Theorem | climmul 11511* |
Limit of the product of two converging sequences. Proposition
12-2.1(c) of [Gleason] p. 168.
(Contributed by NM, 27-Dec-2005.)
(Proof shortened by Mario Carneiro, 1-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐻 ∈ 𝑋)
& ⊢ (𝜑 → 𝐺 ⇝ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · 𝐵)) |
| |
| Theorem | climsub 11512* |
Limit of the difference of two converging sequences. Proposition
12-2.1(b) of [Gleason] p. 168.
(Contributed by NM, 4-Aug-2007.)
(Proof shortened by Mario Carneiro, 1-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐻 ∈ 𝑋)
& ⊢ (𝜑 → 𝐺 ⇝ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) ⇒ ⊢ (𝜑 → 𝐻 ⇝ (𝐴 − 𝐵)) |
| |
| Theorem | climaddc1 11513* |
Limit of a constant 𝐶 added to each term of a sequence.
(Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro,
3-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = ((𝐹‘𝑘) + 𝐶)) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐴 + 𝐶)) |
| |
| Theorem | climaddc2 11514* |
Limit of a constant 𝐶 added to each term of a sequence.
(Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro,
3-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 + (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐶 + 𝐴)) |
| |
| Theorem | climmulc2 11515* |
Limit of a sequence multiplied by a constant 𝐶. Corollary
12-2.2 of [Gleason] p. 171.
(Contributed by NM, 24-Sep-2005.)
(Revised by Mario Carneiro, 3-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐶 · 𝐴)) |
| |
| Theorem | climsubc1 11516* |
Limit of a constant 𝐶 subtracted from each term of a
sequence.
(Contributed by Mario Carneiro, 9-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = ((𝐹‘𝑘) − 𝐶)) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐴 − 𝐶)) |
| |
| Theorem | climsubc2 11517* |
Limit of a constant 𝐶 minus each term of a sequence.
(Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro,
9-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 − (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐺 ⇝ (𝐶 − 𝐴)) |
| |
| Theorem | climle 11518* |
Comparison of the limits of two sequences. (Contributed by Paul
Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ⇝ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| |
| Theorem | climsqz 11519* |
Convergence of a sequence sandwiched between another converging
sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by
Mario Carneiro, 3-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘))
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐺 ⇝ 𝐴) |
| |
| Theorem | climsqz2 11520* |
Convergence of a sequence sandwiched between another converging
sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised
by Mario Carneiro, 3-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ≤ (𝐹‘𝑘))
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ≤ (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → 𝐺 ⇝ 𝐴) |
| |
| Theorem | clim2ser 11521* |
The limit of an infinite series with an initial segment removed.
(Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario
Carneiro, 1-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) ⇒ ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ (𝐴 − (seq𝑀( + , 𝐹)‘𝑁))) |
| |
| Theorem | clim2ser2 11522* |
The limit of an infinite series with an initial segment added.
(Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario
Carneiro, 1-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ 𝐴) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (𝐴 + (seq𝑀( + , 𝐹)‘𝑁))) |
| |
| Theorem | iserex 11523* |
An infinite series converges, if and only if the series does with
initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.)
(Revised by Mario Carneiro, 27-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ)
⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )) |
| |
| Theorem | isermulc2 11524* |
Multiplication of an infinite series by a constant. (Contributed by
Paul Chapman, 14-Nov-2007.) (Revised by Jim Kingdon, 8-Apr-2023.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴)) |
| |
| Theorem | climlec2 11525* |
Comparison of a constant to the limit of a sequence. (Contributed by
NM, 28-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| |
| Theorem | iserle 11526* |
Comparison of the limits of two infinite series. (Contributed by Paul
Chapman, 12-Nov-2007.) (Revised by Mario Carneiro, 3-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
& ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| |
| Theorem | iserge0 11527* |
The limit of an infinite series of nonnegative reals is nonnegative.
(Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario
Carneiro, 3-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 0 ≤ 𝐴) |
| |
| Theorem | climub 11528* |
The limit of a monotonic sequence is an upper bound. (Contributed by
NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ (𝜑 → 𝐹 ⇝ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) ≤ 𝐴) |
| |
| Theorem | climserle 11529* |
The partial sums of a converging infinite series with nonnegative
terms are bounded by its limit. (Contributed by NM, 27-Dec-2005.)
(Revised by Mario Carneiro, 9-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑁 ∈ 𝑍)
& ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ 𝐴) |
| |
| Theorem | iser3shft 11530* |
Index shift of the limit of an infinite series. (Contributed by Mario
Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.)
|
| ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴)) |
| |
| Theorem | climcau 11531* |
A converging sequence of complex numbers is a Cauchy sequence. The
converse would require excluded middle or a different definition of
Cauchy sequence (for example, fixing a rate of convergence as in
climcvg1n 11534). Theorem 12-5.3 of [Gleason] p. 180 (necessity part).
(Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) |
| |
| Theorem | climrecvg1n 11532* |
A Cauchy sequence of real numbers converges, existence version. The
rate of convergence is fixed: all terms after the nth term must be
within 𝐶 / 𝑛 of the nth term, where 𝐶 is a
constant multiplier.
(Contributed by Jim Kingdon, 23-Aug-2021.)
|
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)(abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛)) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
| |
| Theorem | climcvg1nlem 11533* |
Lemma for climcvg1n 11534. We construct sequences of the real and
imaginary parts of each term of 𝐹, show those converge, and use
that to show that 𝐹 converges. (Contributed by Jim
Kingdon,
24-Aug-2021.)
|
| ⊢ (𝜑 → 𝐹:ℕ⟶ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)(abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛))
& ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹‘𝑥))) & ⊢ 𝐻 = (𝑥 ∈ ℕ ↦
(ℑ‘(𝐹‘𝑥))) & ⊢ 𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻‘𝑥))) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
| |
| Theorem | climcvg1n 11534* |
A Cauchy sequence of complex numbers converges, existence version.
The rate of convergence is fixed: all terms after the nth term must be
within 𝐶 / 𝑛 of the nth term, where 𝐶 is a
constant
multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
|
| ⊢ (𝜑 → 𝐹:ℕ⟶ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)(abs‘((𝐹‘𝑘) − (𝐹‘𝑛))) < (𝐶 / 𝑛)) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
| |
| Theorem | climcaucn 11535* |
A converging sequence of complex numbers is a Cauchy sequence. This is
like climcau 11531 but adds the part that (𝐹‘𝑘) is complex.
(Contributed by Jim Kingdon, 24-Aug-2021.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
| |
| Theorem | serf0 11536* |
If an infinite series converges, its underlying sequence converges to
zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro,
16-Feb-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉)
& ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ)
⇒ ⊢ (𝜑 → 𝐹 ⇝ 0) |
| |
| 4.9.2 Finite and infinite sums
|
| |
| Syntax | csu 11537 |
Extend class notation to include finite summations. (An underscore was
added to the ASCII token in order to facilitate set.mm text searches,
since "sum" is a commonly used word in comments.)
|
| class Σ𝑘 ∈ 𝐴 𝐵 |
| |
| Definition | df-sumdc 11538* |
Define the sum of a series with an index set of integers 𝐴. The
variable 𝑘 is normally a free variable in 𝐵, i.e.,
𝐵
can be
thought of as 𝐵(𝑘). This definition is the result of a
collection of discussions over the most general definition for a sum
that does not need the index set to have a specified ordering. This
definition is in two parts, one for finite sums and one for subsets of
the upper integers. When summing over a subset of the upper integers,
we extend the index set to the upper integers by adding zero outside the
domain, and then sum the set in order, setting the result to the limit
of the partial sums, if it exists. This means that conditionally
convergent sums can be evaluated meaningfully. For finite sums, we are
explicitly order-independent, by picking any bijection to a 1-based
finite sequence and summing in the induced order. In both cases we have
an if expression so that we only need 𝐵 to be
defined where
𝑘
∈ 𝐴. In the
infinite case, we also require that the indexing
set be a decidable subset of an upperset of integers (that is,
membership of integers in it is decidable). These two methods of
summation produce the same result on their common region of definition
(i.e., finite sets of integers). Examples:
Σ𝑘 ∈ {1, 2, 4}𝑘 means 1 + 2 + 4 =
7, and
Σ𝑘 ∈ ℕ(1 / (2↑𝑘)) = 1 means 1/2 + 1/4 +
1/8 + ... = 1
(geoihalfsum 11706). (Contributed by NM, 11-Dec-2005.)
(Revised by Jim
Kingdon, 21-May-2023.)
|
| ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)))‘𝑚)))) |
| |
| Theorem | sumeq1 11539 |
Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised
by Mario Carneiro, 13-Jun-2019.)
|
| ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| |
| Theorem | nfsum1 11540 |
Bound-variable hypothesis builder for sum. (Contributed by NM,
11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
|
| ⊢ Ⅎ𝑘𝐴 ⇒ ⊢ Ⅎ𝑘Σ𝑘 ∈ 𝐴 𝐵 |
| |
| Theorem | nfsum 11541 |
Bound-variable hypothesis builder for sum: if 𝑥 is (effectively) not
free in 𝐴 and 𝐵, it is not free in Σ𝑘 ∈
𝐴𝐵.
(Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro,
13-Jun-2019.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥Σ𝑘 ∈ 𝐴 𝐵 |
| |
| Theorem | sumdc 11542* |
Decidability of a subset of upper integers. (Contributed by Jim
Kingdon, 1-Jan-2022.)
|
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑀)) & ⊢ (𝜑 → ∀𝑥 ∈
(ℤ≥‘𝑀)DECID 𝑥 ∈ 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → DECID 𝑁 ∈ 𝐴) |
| |
| Theorem | sumeq2 11543* |
Equality theorem for sum. (Contributed by NM, 11-Dec-2005.) (Revised
by Mario Carneiro, 13-Jul-2013.)
|
| ⊢ (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | cbvsum 11544 |
Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
(Revised by Mario Carneiro, 13-Jun-2019.)
|
| ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶)
& ⊢ Ⅎ𝑘𝐴
& ⊢ Ⅎ𝑗𝐴
& ⊢ Ⅎ𝑘𝐵
& ⊢ Ⅎ𝑗𝐶 ⇒ ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| |
| Theorem | cbvsumv 11545* |
Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
(Revised by Mario Carneiro, 13-Jul-2013.)
|
| ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) ⇒ ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| |
| Theorem | cbvsumi 11546* |
Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
|
| ⊢ Ⅎ𝑘𝐵
& ⊢ Ⅎ𝑗𝐶
& ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) ⇒ ⊢ Σ𝑗 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| |
| Theorem | sumeq1i 11547* |
Equality inference for sum. (Contributed by NM, 2-Jan-2006.)
|
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶 |
| |
| Theorem | sumeq2i 11548* |
Equality inference for sum. (Contributed by NM, 3-Dec-2005.)
|
| ⊢ (𝑘 ∈ 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |
| |
| Theorem | sumeq12i 11549* |
Equality inference for sum. (Contributed by FL, 10-Dec-2006.)
|
| ⊢ 𝐴 = 𝐵
& ⊢ (𝑘 ∈ 𝐴 → 𝐶 = 𝐷) ⇒ ⊢ Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷 |
| |
| Theorem | sumeq1d 11550* |
Equality deduction for sum. (Contributed by NM, 1-Nov-2005.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| |
| Theorem | sumeq2d 11551* |
Equality deduction for sum. Note that unlike sumeq2dv 11552, 𝑘 may
occur in 𝜑. (Contributed by NM, 1-Nov-2005.)
|
| ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | sumeq2dv 11552* |
Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised
by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | sumeq2ad 11553* |
Equality deduction for sum. (Contributed by Glauco Siliprandi,
5-Apr-2020.)
|
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | sumeq2sdv 11554* |
Equality deduction for sum. (Contributed by NM, 3-Jan-2006.)
|
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | 2sumeq2dv 11555* |
Equality deduction for double sum. (Contributed by NM, 3-Jan-2006.)
(Revised by Mario Carneiro, 31-Jan-2014.)
|
| ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑗 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐷) |
| |
| Theorem | sumeq12dv 11556* |
Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷) |
| |
| Theorem | sumeq12rdv 11557* |
Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐷) |
| |
| Theorem | sumfct 11558* |
A lemma to facilitate conversions from the function form to the
class-variable form of a sum. (Contributed by Mario Carneiro,
12-Aug-2013.) (Revised by Jim Kingdon, 18-Sep-2022.)
|
| ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → Σ𝑗 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = Σ𝑘 ∈ 𝐴 𝐵) |
| |
| Theorem | fz1f1o 11559* |
A lemma for working with finite sums. (Contributed by Mario Carneiro,
22-Apr-2014.)
|
| ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
| |
| Theorem | nnf1o 11560 |
Lemma for sum and product theorems. (Contributed by Jim Kingdon,
15-Aug-2022.)
|
| ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) & ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴)
& ⊢ (𝜑 → 𝐺:(1...𝑁)–1-1-onto→𝐴) ⇒ ⊢ (𝜑 → 𝑁 = 𝑀) |
| |
| Theorem | sumrbdclem 11561* |
Lemma for sumrbdc 11563. (Contributed by Mario Carneiro,
12-Aug-2013.)
(Revised by Jim Kingdon, 8-Apr-2023.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀))
⇒ ⊢ ((𝜑 ∧ 𝐴 ⊆
(ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹) ↾
(ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |
| |
| Theorem | fsum3cvg 11562* |
The sequence of partial sums of a finite sum converges to the whole
sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim
Kingdon, 12-Nov-2022.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁)) |
| |
| Theorem | sumrbdc 11563* |
Rebase the starting point of a sum. (Contributed by Mario Carneiro,
14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑁)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → DECID
𝑘 ∈ 𝐴) ⇒ ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
| |
| Theorem | summodclem3 11564* |
Lemma for summodc 11567. (Contributed by Mario Carneiro,
29-Mar-2014.)
(Revised by Jim Kingdon, 9-Apr-2023.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) & ⊢ (𝜑 → 𝑓:(1...𝑀)–1-1-onto→𝐴)
& ⊢ (𝜑 → 𝐾:(1...𝑁)–1-1-onto→𝐴)
& ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑁, ⦋(𝐾‘𝑛) / 𝑘⦌𝐵, 0)) ⇒ ⊢ (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁)) |
| |
| Theorem | summodclem2a 11565* |
Lemma for summodc 11567. (Contributed by Mario Carneiro,
3-Apr-2014.)
(Revised by Jim Kingdon, 9-Apr-2023.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑁, ⦋(𝐾‘𝑛) / 𝑘⦌𝐵, 0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆
(ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑓:(1...𝑁)–1-1-onto→𝐴)
& ⊢ (𝜑 → 𝐾 Isom < , <
((1...(♯‘𝐴)),
𝐴)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑁)) |
| |
| Theorem | summodclem2 11566* |
Lemma for summodc 11567. (Contributed by Mario Carneiro,
3-Apr-2014.)
(Revised by Jim Kingdon, 4-May-2023.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) ⇒ ⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| |
| Theorem | summodc 11567* |
A sum has at most one limit. (Contributed by Mario Carneiro,
3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
|
| ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) ⇒ ⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , 𝐺)‘𝑚)))) |
| |
| Theorem | zsumdc 11568* |
Series sum with index set a subset of the upper integers.
(Contributed by Mario Carneiro, 13-Jun-2019.) (Revised by Jim
Kingdon, 8-Apr-2023.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑍 DECID 𝑥 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹))) |
| |
| Theorem | isum 11569* |
Series sum with an upper integer index set (i.e. an infinite series).
(Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario
Carneiro, 7-Apr-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹))) |
| |
| Theorem | fsumgcl 11570* |
Closure for a function used to describe a sum over a nonempty finite
set. (Contributed by Jim Kingdon, 10-Oct-2022.)
|
| ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶)
& ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) |
| |
| Theorem | fsum3 11571* |
The value of a sum over a nonempty finite set. (Contributed by Jim
Kingdon, 10-Oct-2022.)
|
| ⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶)
& ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 0)))‘𝑀)) |
| |
| Theorem | sum0 11572 |
Any sum over the empty set is zero. (Contributed by Mario Carneiro,
12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
|
| ⊢ Σ𝑘 ∈ ∅ 𝐴 = 0 |
| |
| Theorem | isumz 11573* |
Any sum of zero over a summable set is zero. (Contributed by Mario
Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
|
| ⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘 ∈ 𝐴 0 = 0) |
| |
| Theorem | fsumf1o 11574* |
Re-index a finite sum using a bijection. (Contributed by Mario
Carneiro, 20-Apr-2014.)
|
| ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷)
& ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ (𝜑 → 𝐹:𝐶–1-1-onto→𝐴)
& ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑛 ∈ 𝐶 𝐷) |
| |
| Theorem | isumss 11575* |
Change the index set to a subset in an upper integer sum.
(Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim
Kingdon, 21-Sep-2022.)
|
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) & ⊢ (𝜑 → ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ⊆
(ℤ≥‘𝑀)) & ⊢ (𝜑 → ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| |
| Theorem | fisumss 11576* |
Change the index set to a subset in a finite sum. (Contributed by Mario
Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.)
|
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) & ⊢ (𝜑 → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| |
| Theorem | isumss2 11577* |
Change the index set of a sum by adding zeroes. The nonzero elements
are in the contained set 𝐴 and the added zeroes compose the
rest of
the containing set 𝐵 which needs to be summable.
(Contributed by
Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
|
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵)
& ⊢ (𝜑 → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴)
& ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) & ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐵) ∨ 𝐵 ∈ Fin))
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 if(𝑘 ∈ 𝐴, 𝐶, 0)) |
| |
| Theorem | fsum3cvg2 11578* |
The sequence of partial sums of a finite sum converges to the whole sum.
(Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon,
2-Dec-2022.)
|
| ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁)) |
| |
| Theorem | fsumsersdc 11579* |
Special case of series sum over a finite upper integer index set.
(Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Jim
Kingdon, 5-May-2023.)
|
| ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ (𝜑 → 𝐴 ⊆ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (seq𝑀( + , 𝐹)‘𝑁)) |
| |
| Theorem | fsum3cvg3 11580* |
A finite sum is convergent. (Contributed by Mario Carneiro,
24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ⊆ 𝑍)
& ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| |
| Theorem | fsum3ser 11581* |
A finite sum expressed in terms of a partial sum of an infinite series.
The recursive definition follows as fsum1 11596 and fsump1 11604, which should
make our notation clear and from which, along with closure fsumcl 11584, we
will derive the basic properties of finite sums. (Contributed by NM,
11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
|
| ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = 𝐴)
& ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁)) |
| |
| Theorem | fsumcl2lem 11582* |
- Lemma for finite sum closures. (The "-" before "Lemma"
forces the
math content to be displayed in the Statement List - NM 11-Feb-2008.)
(Contributed by Mario Carneiro, 3-Jun-2014.)
|
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ≠ ∅)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| |
| Theorem | fsumcllem 11583* |
- Lemma for finite sum closures. (The "-" before "Lemma"
forces the
math content to be displayed in the Statement List - NM 11-Feb-2008.)
(Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro,
3-Jun-2014.)
|
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 0 ∈ 𝑆) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| |
| Theorem | fsumcl 11584* |
Closure of a finite sum of complex numbers 𝐴(𝑘). (Contributed
by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| |
| Theorem | fsumrecl 11585* |
Closure of a finite sum of reals. (Contributed by NM, 9-Nov-2005.)
(Revised by Mario Carneiro, 22-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℝ) |
| |
| Theorem | fsumzcl 11586* |
Closure of a finite sum of integers. (Contributed by NM, 9-Nov-2005.)
(Revised by Mario Carneiro, 22-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) |
| |
| Theorem | fsumnn0cl 11587* |
Closure of a finite sum of nonnegative integers. (Contributed by
Mario Carneiro, 23-Apr-2015.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈
ℕ0) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈
ℕ0) |
| |
| Theorem | fsumrpcl 11588* |
Closure of a finite sum of positive reals. (Contributed by Mario
Carneiro, 3-Jun-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈
ℝ+) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈
ℝ+) |
| |
| Theorem | fsumzcl2 11589* |
A finite sum with integer summands is an integer. (Contributed by
Alexander van der Vekens, 31-Aug-2018.)
|
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) |
| |
| Theorem | fsumadd 11590* |
The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised
by Mario Carneiro, 22-Apr-2014.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 + 𝐶) = (Σ𝑘 ∈ 𝐴 𝐵 + Σ𝑘 ∈ 𝐴 𝐶)) |
| |
| Theorem | fsumsplit 11591* |
Split a sum into two parts. (Contributed by Mario Carneiro,
18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
|
| ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
| |
| Theorem | fsumsplitf 11592* |
Split a sum into two parts. A version of fsumsplit 11591 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
| |
| Theorem | sumsnf 11593* |
A sum of a singleton is the term. A version of sumsn 11595 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝐵
& ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| |
| Theorem | fsumsplitsn 11594* |
Separate out a term in a finite sum. (Contributed by Glauco Siliprandi,
5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ Ⅎ𝑘𝐷
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷)
& ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + 𝐷)) |
| |
| Theorem | sumsn 11595* |
A sum of a singleton is the term. (Contributed by Mario Carneiro,
22-Apr-2014.)
|
| ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| |
| Theorem | fsum1 11596* |
The finite sum of 𝐴(𝑘) from 𝑘 = 𝑀 to 𝑀 (i.e. a sum with
only one term) is 𝐵 i.e. 𝐴(𝑀). (Contributed by NM,
8-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
|
| ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ (𝑀...𝑀)𝐴 = 𝐵) |
| |
| Theorem | sumpr 11597* |
A sum over a pair is the sum of the elements. (Contributed by Thierry
Arnoux, 12-Dec-2016.)
|
| ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷)
& ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸)
& ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) & ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) |
| |
| Theorem | sumtp 11598* |
A sum over a triple is the sum of the elements. (Contributed by AV,
24-Jul-2020.)
|
| ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸)
& ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹)
& ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺)
& ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)) & ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵)
& ⊢ (𝜑 → 𝐴 ≠ 𝐶)
& ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺)) |
| |
| Theorem | sumsns 11599* |
A sum of a singleton is the term. (Contributed by Mario Carneiro,
22-Apr-2014.)
|
| ⊢ ((𝑀 ∈ 𝑉 ∧ ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
| |
| Theorem | fsumm1 11600* |
Separate out the last term in a finite sum. (Contributed by Mario
Carneiro, 26-Apr-2014.)
|
| ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵)) |