HomeHome Intuitionistic Logic Explorer
Theorem List (p. 116 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11501-11600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
4.8.10  Finite and infinite products
 
4.8.10.1  Product sequences
 
Theoremprodf 11501* An infinite product of complex terms is a function from an upper set of integers to . (Contributed by Scott Fenton, 4-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)       (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
 
Theoremclim2prod 11502* The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ 𝐴)       (𝜑 → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘𝑁) · 𝐴))
 
Theoremclim2divap 11503* The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐴)    &   (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)       (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)))
 
Theoremprod3fmul 11504* The product of two infinite products. (Contributed by Scott Fenton, 18-Dec-2017.) (Revised by Jim Kingdon, 22-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))       (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , 𝐺)‘𝑁)))
 
Theoremprodf1 11505 The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017.)
𝑍 = (ℤ𝑀)       (𝑁𝑍 → (seq𝑀( · , (𝑍 × {1}))‘𝑁) = 1)
 
Theoremprodf1f 11506 A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) = (𝑍 × {1}))
 
Theoremprodfclim1 11507 The constant one product converges to one. (Contributed by Scott Fenton, 5-Dec-2017.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → seq𝑀( · , (𝑍 × {1})) ⇝ 1)
 
Theoremprodfap0 11508* The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)       (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)
 
Theoremprodfrecap 11509* The reciprocal of a finite product. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) # 0)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) = (1 / (𝐹𝑘)))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)       (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) = (1 / (seq𝑀( · , 𝐹)‘𝑁)))
 
Theoremprodfdivap 11510* The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) # 0)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))       (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
 
4.8.10.2  Non-trivial convergence
 
Theoremntrivcvgap 11511* A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)       (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
 
Theoremntrivcvgap0 11512* A product that converges to a value apart from zero converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)    &   (𝜑𝑋 # 0)       (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
 
4.8.10.3  Complex products
 
Syntaxcprod 11513 Extend class notation to include complex products.
class 𝑘𝐴 𝐵
 
Definitiondf-proddc 11514* Define the product of a series with an index set of integers 𝐴. This definition takes most of the aspects of df-sumdc 11317 and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 21-Mar-2024.)
𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
 
Theoremprodeq1f 11515 Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
𝑘𝐴    &   𝑘𝐵       (𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
 
Theoremprodeq1 11516* Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
(𝐴 = 𝐵 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
 
Theoremnfcprod1 11517* Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝑘𝐴       𝑘𝑘𝐴 𝐵
 
Theoremnfcprod 11518* Bound-variable hypothesis builder for product: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in 𝑘𝐴𝐵. (Contributed by Scott Fenton, 1-Dec-2017.)
𝑥𝐴    &   𝑥𝐵       𝑥𝑘𝐴 𝐵
 
Theoremprodeq2w 11519* Equality theorem for product, when the class expressions 𝐵 and 𝐶 are equal everywhere. Proved using only Extensionality. (Contributed by Scott Fenton, 4-Dec-2017.)
(∀𝑘 𝐵 = 𝐶 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theoremprodeq2 11520* Equality theorem for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(∀𝑘𝐴 𝐵 = 𝐶 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theoremcbvprod 11521* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝑗 = 𝑘𝐵 = 𝐶)    &   𝑘𝐴    &   𝑗𝐴    &   𝑘𝐵    &   𝑗𝐶       𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
 
Theoremcbvprodv 11522* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝑗 = 𝑘𝐵 = 𝐶)       𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
 
Theoremcbvprodi 11523* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝑘𝐵    &   𝑗𝐶    &   (𝑗 = 𝑘𝐵 = 𝐶)       𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
 
Theoremprodeq1i 11524* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝐴 = 𝐵       𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶
 
Theoremprodeq2i 11525* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝑘𝐴𝐵 = 𝐶)       𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶
 
Theoremprodeq12i 11526* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝐴 = 𝐵    &   (𝑘𝐴𝐶 = 𝐷)       𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐷
 
Theoremprodeq1d 11527* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝜑𝐴 = 𝐵)       (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
 
Theoremprodeq2d 11528* Equality deduction for product. Note that unlike prodeq2dv 11529, 𝑘 may occur in 𝜑. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)       (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theoremprodeq2dv 11529* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
((𝜑𝑘𝐴) → 𝐵 = 𝐶)       (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theoremprodeq2sdv 11530* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝜑𝐵 = 𝐶)       (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theorem2cprodeq2dv 11531* Equality deduction for double product. (Contributed by Scott Fenton, 4-Dec-2017.)
((𝜑𝑗𝐴𝑘𝐵) → 𝐶 = 𝐷)       (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑗𝐴𝑘𝐵 𝐷)
 
Theoremprodeq12dv 11532* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑘𝐴) → 𝐶 = 𝐷)       (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐷)
 
Theoremprodeq12rdv 11533* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑘𝐵) → 𝐶 = 𝐷)       (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐷)
 
Theoremprodrbdclem 11534* Lemma for prodrbdc 11537. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))       ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
 
Theoremfproddccvg 11535* The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐴 ⊆ (𝑀...𝑁))       (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq𝑀( · , 𝐹)‘𝑁))
 
Theoremprodrbdclem2 11536* Lemma for prodrbdc 11537. (Contributed by Scott Fenton, 4-Dec-2017.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑𝐴 ⊆ (ℤ𝑁))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)       ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
 
Theoremprodrbdc 11537* Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑𝐴 ⊆ (ℤ𝑁))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)       (𝜑 → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
 
Theoremprodmodclem3 11538* Lemma for prodmodc 11541. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))    &   𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝐾𝑗) / 𝑘𝐵, 1))    &   (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))    &   (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)    &   (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)       (𝜑 → (seq1( · , 𝐺)‘𝑀) = (seq1( · , 𝐻)‘𝑁))
 
Theoremprodmodclem2a 11539* Lemma for prodmodc 11541. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))    &   𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝐾𝑗) / 𝑘𝐵, 1))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)    &   (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))       (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑁))
 
Theoremprodmodclem2 11540* Lemma for prodmodc 11541. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 13-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))       ((𝜑 ∧ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥))) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( · , 𝐺)‘𝑚)) → 𝑥 = 𝑧))
 
Theoremprodmodc 11541* A product has at most one limit. (Contributed by Scott Fenton, 4-Dec-2017.) (Modified by Jim Kingdon, 14-Apr-2024.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))       (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , 𝐺)‘𝑚))))
 
Theoremzproddc 11542* Series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 5-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))    &   (𝜑𝐴𝑍)    &   (𝜑 → ∀𝑗𝑍 DECID 𝑗𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹)))
 
Theoremiprodap 11543* Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑘𝑍 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹)))
 
Theoremzprodap0 11544* Nonzero series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 6-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑋 # 0)    &   (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)    &   (𝜑 → ∀𝑗𝑍 DECID 𝑗𝐴)    &   (𝜑𝐴𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑘𝐴 𝐵 = 𝑋)
 
Theoremiprodap0 11545* Nonzero series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 6-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑋 # 0)    &   (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑘𝑍 𝐵 = 𝑋)
 
4.8.10.4  Finite products
 
Theoremfprodseq 11546* The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017.) (Revised by Jim Kingdon, 15-Jul-2024.)
(𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)       (𝜑 → ∏𝑘𝐴 𝐵 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))
 
Theoremfprodntrivap 11547* A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   (𝜑𝐴 ⊆ (𝑀...𝑁))       (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘𝑍 ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
 
Theoremprod0 11548 A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017.)
𝑘 ∈ ∅ 𝐴 = 1
 
Theoremprod1dc 11549* Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
(((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
 
Theoremprodfct 11550* A lemma to facilitate conversions from the function form to the class-variable form of a product. (Contributed by Scott Fenton, 7-Dec-2017.)
(∀𝑘𝐴 𝐵 ∈ ℂ → ∏𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = ∏𝑘𝐴 𝐵)
 
Theoremfprodf1o 11551* Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017.)
(𝑘 = 𝐺𝐵 = 𝐷)    &   (𝜑𝐶 ∈ Fin)    &   (𝜑𝐹:𝐶1-1-onto𝐴)    &   ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷)
 
Theoremprodssdc 11552* Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon, 6-Aug-2024.)
(𝜑𝐴𝐵)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   (𝜑 → ∃𝑛 ∈ (ℤ𝑀)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ (ℤ𝑀) ↦ if(𝑘𝐵, 𝐶, 1))) ⇝ 𝑦))    &   (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)    &   (𝜑𝐵 ⊆ (ℤ𝑀))    &   (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)       (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
 
Theoremfprodssdc 11553* Change the index set to a subset in a finite sum. (Contributed by Scott Fenton, 16-Dec-2017.)
(𝜑𝐴𝐵)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)    &   ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 1)    &   (𝜑𝐵 ∈ Fin)       (𝜑 → ∏𝑘𝐴 𝐶 = ∏𝑘𝐵 𝐶)
 
Theoremfprodmul 11554* The product of two finite products. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)       (𝜑 → ∏𝑘𝐴 (𝐵 · 𝐶) = (∏𝑘𝐴 𝐵 · ∏𝑘𝐴 𝐶))
 
Theoremprodsnf 11555* A product of a singleton is the term. A version of prodsn 11556 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝐵    &   (𝑘 = 𝑀𝐴 = 𝐵)       ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
 
Theoremprodsn 11556* A product of a singleton is the term. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝑘 = 𝑀𝐴 = 𝐵)       ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
 
Theoremfprod1 11557* A finite product of only one term is the term itself. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝑘 = 𝑀𝐴 = 𝐵)       ((𝑀 ∈ ℤ ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = 𝐵)
 
Theoremclimprod1 11558 The limit of a product over one. (Contributed by Scott Fenton, 15-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)       (𝜑 → seq𝑀( · , (𝑍 × {1})) ⇝ 1)
 
Theoremfprodsplitdc 11559* Split a finite product into two parts. New proofs should use fprodsplit 11560 which is the same but with one fewer hypothesis. (Contributed by Scott Fenton, 16-Dec-2017.) (New usage is discouraged.)
(𝜑 → (𝐴𝐵) = ∅)    &   (𝜑𝑈 = (𝐴𝐵))    &   (𝜑𝑈 ∈ Fin)    &   (𝜑 → ∀𝑗𝑈 DECID 𝑗𝐴)    &   ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)       (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
 
Theoremfprodsplit 11560* Split a finite product into two parts. (Contributed by Scott Fenton, 16-Dec-2017.)
(𝜑 → (𝐴𝐵) = ∅)    &   (𝜑𝑈 = (𝐴𝐵))    &   (𝜑𝑈 ∈ Fin)    &   ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)       (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
 
Theoremfprodm1 11561* Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   (𝑘 = 𝑁𝐴 = 𝐵)       (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵))
 
Theoremfprod1p 11562* Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   (𝑘 = 𝑀𝐴 = 𝐵)       (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (𝐵 · ∏𝑘 ∈ ((𝑀 + 1)...𝑁)𝐴))
 
Theoremfprodp1 11563* Multiply in the last term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)    &   (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵)       (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · 𝐵))
 
Theoremfprodm1s 11564* Separate out the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)       (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝑁 / 𝑘𝐴))
 
Theoremfprodp1s 11565* Multiply in the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)       (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · (𝑁 + 1) / 𝑘𝐴))
 
Theoremprodsns 11566* A product of the singleton is the term. (Contributed by Scott Fenton, 25-Dec-2017.)
((𝑀𝑉𝑀 / 𝑘𝐴 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝑀 / 𝑘𝐴)
 
Theoremfprodunsn 11567* Multiply in an additional term in a finite product. See also fprodsplitsn 11596 which is the same but with a 𝑘𝜑 hypothesis in place of the distinct variable condition between 𝜑 and 𝑘. (Contributed by Jim Kingdon, 16-Aug-2024.)
𝑘𝐷    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐵𝑉)    &   (𝜑 → ¬ 𝐵𝐴)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝑘 = 𝐵𝐶 = 𝐷)       (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · 𝐷))
 
Theoremfprodcl2lem 11568* Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.) (Revised by Jim Kingdon, 17-Aug-2024.)
(𝜑𝑆 ⊆ ℂ)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵𝑆)    &   (𝜑𝐴 ≠ ∅)       (𝜑 → ∏𝑘𝐴 𝐵𝑆)
 
Theoremfprodcllem 11569* Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝜑𝑆 ⊆ ℂ)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵𝑆)    &   (𝜑 → 1 ∈ 𝑆)       (𝜑 → ∏𝑘𝐴 𝐵𝑆)
 
Theoremfprodcl 11570* Closure of a finite product of complex numbers. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℂ)
 
Theoremfprodrecl 11571* Closure of a finite product of real numbers. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)       (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℝ)
 
Theoremfprodzcl 11572* Closure of a finite product of integers. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)       (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℤ)
 
Theoremfprodnncl 11573* Closure of a finite product of positive integers. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ)       (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℕ)
 
Theoremfprodrpcl 11574* Closure of a finite product of positive reals. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ+)       (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℝ+)
 
Theoremfprodnn0cl 11575* Closure of a finite product of nonnegative integers. (Contributed by Scott Fenton, 14-Dec-2017.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ0)       (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℕ0)
 
Theoremfprodcllemf 11576* Finite product closure lemma. A version of fprodcllem 11569 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝑆 ⊆ ℂ)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵𝑆)    &   (𝜑 → 1 ∈ 𝑆)       (𝜑 → ∏𝑘𝐴 𝐵𝑆)
 
Theoremfprodreclf 11577* Closure of a finite product of real numbers. A version of fprodrecl 11571 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)       (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℝ)
 
Theoremfprodfac 11578* Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.)
(𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
 
Theoremfprodabs 11579* The absolute value of a finite product. (Contributed by Scott Fenton, 25-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)       (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
 
Theoremfprodeq0 11580* Any finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   ((𝜑𝑘 = 𝑁) → 𝐴 = 0)       ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = 0)
 
Theoremfprodshft 11581* Shift the index of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   (𝑗 = (𝑘𝐾) → 𝐴 = 𝐵)       (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)𝐴 = ∏𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵)
 
Theoremfprodrev 11582* Reversal of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   (𝑗 = (𝐾𝑘) → 𝐴 = 𝐵)       (𝜑 → ∏𝑗 ∈ (𝑀...𝑁)𝐴 = ∏𝑘 ∈ ((𝐾𝑁)...(𝐾𝑀))𝐵)
 
Theoremfprodconst 11583* The product of constant terms (𝑘 is not free in 𝐵). (Contributed by Scott Fenton, 12-Jan-2018.)
((𝐴 ∈ Fin ∧ 𝐵 ∈ ℂ) → ∏𝑘𝐴 𝐵 = (𝐵↑(♯‘𝐴)))
 
Theoremfprodap0 11584* A finite product of nonzero terms is nonzero. (Contributed by Scott Fenton, 15-Jan-2018.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐵 # 0)       (𝜑 → ∏𝑘𝐴 𝐵 # 0)
 
Theoremfprod2dlemstep 11585* Lemma for fprod2d 11586- induction step. (Contributed by Scott Fenton, 30-Jan-2018.)
(𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)    &   ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)    &   (𝜑 → ¬ 𝑦𝑥)    &   (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴)    &   (𝜑𝑥 ∈ Fin)    &   (𝜓 ↔ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)       ((𝜑𝜓) → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
 
Theoremfprod2d 11586* Write a double product as a product over a two-dimensional region. Compare fsum2d 11398. (Contributed by Scott Fenton, 30-Jan-2018.)
(𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)    &   ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)       (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐷)
 
Theoremfprodxp 11587* Combine two products into a single product over the cartesian product. (Contributed by Scott Fenton, 1-Feb-2018.)
(𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐵 ∈ Fin)    &   ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)       (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑧 ∈ (𝐴 × 𝐵)𝐷)
 
Theoremfprodcnv 11588* Transform a product region using the converse operation. (Contributed by Scott Fenton, 1-Feb-2018.)
(𝑥 = ⟨𝑗, 𝑘⟩ → 𝐵 = 𝐷)    &   (𝑦 = ⟨𝑘, 𝑗⟩ → 𝐶 = 𝐷)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑 → Rel 𝐴)    &   ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑥𝐴 𝐵 = ∏𝑦 𝐴𝐶)
 
Theoremfprodcom2fi 11589* Interchange order of multiplication. Note that 𝐵(𝑗) and 𝐷(𝑘) are not necessarily constant expressions. (Contributed by Scott Fenton, 1-Feb-2018.) (Proof shortened by JJ, 2-Aug-2021.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐶 ∈ Fin)    &   ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)    &   ((𝜑𝑘𝐶) → 𝐷 ∈ Fin)    &   (𝜑 → ((𝑗𝐴𝑘𝐵) ↔ (𝑘𝐶𝑗𝐷)))    &   ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐸 ∈ ℂ)       (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐸 = ∏𝑘𝐶𝑗𝐷 𝐸)
 
Theoremfprodcom 11590* Interchange product order. (Contributed by Scott Fenton, 2-Feb-2018.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐵 ∈ Fin)    &   ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)       (𝜑 → ∏𝑗𝐴𝑘𝐵 𝐶 = ∏𝑘𝐵𝑗𝐴 𝐶)
 
Theoremfprod0diagfz 11591* Two ways to express "the product of 𝐴(𝑗, 𝑘) over the triangular region 𝑀𝑗, 𝑀𝑘, 𝑗 + 𝑘𝑁. Compare fisum0diag 11404. (Contributed by Scott Fenton, 2-Feb-2018.)
((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁𝑗)))) → 𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → ∏𝑗 ∈ (0...𝑁)∏𝑘 ∈ (0...(𝑁𝑗))𝐴 = ∏𝑘 ∈ (0...𝑁)∏𝑗 ∈ (0...(𝑁𝑘))𝐴)
 
Theoremfprodrec 11592* The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐵 # 0)       (𝜑 → ∏𝑘𝐴 (1 / 𝐵) = (1 / ∏𝑘𝐴 𝐵))
 
Theoremfproddivap 11593* The quotient of two finite products. (Contributed by Scott Fenton, 15-Jan-2018.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐶 # 0)       (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
 
Theoremfproddivapf 11594* The quotient of two finite products. A version of fproddivap 11593 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐶 # 0)       (𝜑 → ∏𝑘𝐴 (𝐵 / 𝐶) = (∏𝑘𝐴 𝐵 / ∏𝑘𝐴 𝐶))
 
Theoremfprodsplitf 11595* Split a finite product into two parts. A version of fprodsplit 11560 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑 → (𝐴𝐵) = ∅)    &   (𝜑𝑈 = (𝐴𝐵))    &   (𝜑𝑈 ∈ Fin)    &   ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)       (𝜑 → ∏𝑘𝑈 𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘𝐵 𝐶))
 
Theoremfprodsplitsn 11596* Separate out a term in a finite product. See also fprodunsn 11567 which is the same but with a distinct variable condition in place of 𝑘𝜑. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   𝑘𝐷    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐵𝑉)    &   (𝜑 → ¬ 𝐵𝐴)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   (𝑘 = 𝐵𝐶 = 𝐷)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · 𝐷))
 
Theoremfprodsplit1f 11597* Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝑘𝐷)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑𝐶𝐴)    &   ((𝜑𝑘 = 𝐶) → 𝐵 = 𝐷)       (𝜑 → ∏𝑘𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
 
Theoremfprodclf 11598* Closure of a finite product of complex numbers. A version of fprodcl 11570 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑘𝐴 𝐵 ∈ ℂ)
 
Theoremfprodap0f 11599* A finite product of terms apart from zero is apart from zero. A version of fprodap0 11584 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by Jim Kingdon, 30-Aug-2024.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐵 # 0)       (𝜑 → ∏𝑘𝐴 𝐵 # 0)
 
Theoremfprodge0 11600* If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 0 ≤ 𝐵)       (𝜑 → 0 ≤ ∏𝑘𝐴 𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >