Step | Hyp | Ref
| Expression |
1 | | df-proddc 11425 |
. 2
⊢
∏𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
2 | | nnuz 9453 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
3 | | 1zzd 9173 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
4 | | eqid 2154 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)) |
5 | | breq1 3964 |
. . . . . . . 8
⊢ (𝑛 = 𝑝 → (𝑛 ≤ 𝑀 ↔ 𝑝 ≤ 𝑀)) |
6 | | fveq2 5461 |
. . . . . . . 8
⊢ (𝑛 = 𝑝 → (𝐺‘𝑛) = (𝐺‘𝑝)) |
7 | 5, 6 | ifbieq1d 3523 |
. . . . . . 7
⊢ (𝑛 = 𝑝 → if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1) = if(𝑝 ≤ 𝑀, (𝐺‘𝑝), 1)) |
8 | | simpr 109 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → 𝑝 ∈ ℕ) |
9 | | simpll 519 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ 𝑀) → 𝜑) |
10 | 8 | anim1i 338 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ 𝑀) → (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝑀)) |
11 | | fprod.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℕ) |
12 | 11 | nnzd 9264 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
13 | | fznn 9969 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → (𝑝 ∈ (1...𝑀) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝑀))) |
14 | 12, 13 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑝 ∈ (1...𝑀) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝑀))) |
15 | 14 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ 𝑀) → (𝑝 ∈ (1...𝑀) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝑀))) |
16 | 10, 15 | mpbird 166 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ 𝑀) → 𝑝 ∈ (1...𝑀)) |
17 | 6 | eleq1d 2223 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑝 → ((𝐺‘𝑛) ∈ ℂ ↔ (𝐺‘𝑝) ∈ ℂ)) |
18 | | fprod.1 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶) |
19 | | fprod.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴) |
20 | | fprod.4 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
21 | | fprod.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) |
22 | 18, 11, 19, 20, 21 | fsumgcl 11260 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) |
23 | 22 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (1...𝑀)) → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) |
24 | | simpr 109 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (1...𝑀)) → 𝑝 ∈ (1...𝑀)) |
25 | 17, 23, 24 | rspcdva 2818 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (1...𝑀)) → (𝐺‘𝑝) ∈ ℂ) |
26 | 9, 16, 25 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ 𝑀) → (𝐺‘𝑝) ∈ ℂ) |
27 | | 1cnd 7873 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑀) → 1 ∈ ℂ) |
28 | 8 | nnzd 9264 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → 𝑝 ∈ ℤ) |
29 | 12 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → 𝑀 ∈ ℤ) |
30 | | zdcle 9219 |
. . . . . . . . 9
⊢ ((𝑝 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
DECID 𝑝 ≤
𝑀) |
31 | 28, 29, 30 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → DECID
𝑝 ≤ 𝑀) |
32 | 26, 27, 31 | ifcldadc 3530 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → if(𝑝 ≤ 𝑀, (𝐺‘𝑝), 1) ∈ ℂ) |
33 | 4, 7, 8, 32 | fvmptd3 5554 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1))‘𝑝) = if(𝑝 ≤ 𝑀, (𝐺‘𝑝), 1)) |
34 | 33, 32 | eqeltrd 2231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1))‘𝑝) ∈ ℂ) |
35 | 2, 3, 34 | prodf 11412 |
. . . 4
⊢ (𝜑 → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛),
1))):ℕ⟶ℂ) |
36 | 35, 11 | ffvelrnd 5596 |
. . 3
⊢ (𝜑 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) ∈ ℂ) |
37 | | eleq1w 2215 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (𝑖 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) |
38 | 37 | dcbid 824 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (DECID 𝑖 ∈ 𝐴 ↔ DECID 𝑗 ∈ 𝐴)) |
39 | 38 | cbvralv 2677 |
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
40 | 39 | anbi2i 453 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑖 ∈ (ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) |
41 | 40 | anbi1i 454 |
. . . . . . . . 9
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑖 ∈ (ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥))) |
42 | 41 | rexbii 2461 |
. . . . . . . 8
⊢
(∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑖 ∈ (ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥))) |
43 | | nnnn0 9076 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
44 | | hashfz1 10634 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ ℕ0
→ (♯‘(1...𝑚)) = 𝑚) |
45 | 43, 44 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ →
(♯‘(1...𝑚)) =
𝑚) |
46 | 45 | adantr 274 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) →
(♯‘(1...𝑚)) =
𝑚) |
47 | | 1zzd 9173 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 1 ∈
ℤ) |
48 | | nnz 9165 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℤ) |
49 | 48 | adantr 274 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑚 ∈ ℤ) |
50 | 47, 49 | fzfigd 10308 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (1...𝑚) ∈ Fin) |
51 | | simpr 109 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
52 | 50, 51 | fihasheqf1od 10641 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) →
(♯‘(1...𝑚)) =
(♯‘𝐴)) |
53 | 46, 52 | eqtr3d 2189 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑚 = (♯‘𝐴)) |
54 | 53 | breq2d 3973 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑛 ≤ 𝑚 ↔ 𝑛 ≤ (♯‘𝐴))) |
55 | 54 | ifbid 3522 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1) = if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)) |
56 | 55 | mpteq2dv 4051 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1))) |
57 | 56 | seqeq3d 10330 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))) |
58 | 57 | fveq1d 5463 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) |
59 | 58 | eqeq2d 2166 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) |
60 | 59 | pm5.32da 448 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
61 | 60 | exbidv 1802 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ →
(∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
62 | 61 | rexbiia 2469 |
. . . . . . . . 9
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) |
63 | 62 | bicomi 131 |
. . . . . . . 8
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) |
64 | 42, 63 | orbi12i 754 |
. . . . . . 7
⊢
((∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑖 ∈ (ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
65 | | f1of 5407 |
. . . . . . . . . . . . 13
⊢ (𝐹:(1...𝑀)–1-1-onto→𝐴 → 𝐹:(1...𝑀)⟶𝐴) |
66 | 19, 65 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:(1...𝑀)⟶𝐴) |
67 | 3, 12 | fzfigd 10308 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
68 | | fex 5687 |
. . . . . . . . . . . 12
⊢ ((𝐹:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ Fin) → 𝐹 ∈ V) |
69 | 66, 67, 68 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ V) |
70 | 11, 2 | eleqtrdi 2247 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
71 | | fveq2 5461 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑢 → (𝐹‘𝑛) = (𝐹‘𝑢)) |
72 | 71 | csbeq1d 3034 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑢 → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = ⦋(𝐹‘𝑢) / 𝑘⦌𝐵) |
73 | | fveq2 5461 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑢 → (𝐺‘𝑛) = (𝐺‘𝑢)) |
74 | 72, 73 | eqeq12d 2169 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑢 → (⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = (𝐺‘𝑛) ↔ ⦋(𝐹‘𝑢) / 𝑘⦌𝐵 = (𝐺‘𝑢))) |
75 | 66 | ffvelrnda 5595 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐹‘𝑛) ∈ 𝐴) |
76 | 18 | adantl 275 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑘 = (𝐹‘𝑛)) → 𝐵 = 𝐶) |
77 | 75, 76 | csbied 3073 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐶) |
78 | 77, 21 | eqtr4d 2190 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = (𝐺‘𝑛)) |
79 | 78 | ralrimiva 2527 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = (𝐺‘𝑛)) |
80 | 79 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ∀𝑛 ∈ (1...𝑀)⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = (𝐺‘𝑛)) |
81 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → 𝑢 ∈ (1...𝑀)) |
82 | 74, 80, 81 | rspcdva 2818 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ⦋(𝐹‘𝑢) / 𝑘⦌𝐵 = (𝐺‘𝑢)) |
83 | | eqid 2154 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)) |
84 | | breq1 3964 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑢 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑢 ≤ (♯‘𝐴))) |
85 | 84, 72 | ifbieq1d 3523 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑢 → if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1) = if(𝑢 ≤ (♯‘𝐴), ⦋(𝐹‘𝑢) / 𝑘⦌𝐵, 1)) |
86 | | elfznn 9934 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ (1...𝑀) → 𝑢 ∈ ℕ) |
87 | 86 | adantl 275 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → 𝑢 ∈ ℕ) |
88 | | elfzle2 9908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 ∈ (1...𝑀) → 𝑢 ≤ 𝑀) |
89 | 88 | adantl 275 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → 𝑢 ≤ 𝑀) |
90 | 11 | nnnn0d 9122 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
91 | | hashfz1 10634 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑀 ∈ ℕ0
→ (♯‘(1...𝑀)) = 𝑀) |
92 | 90, 91 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (♯‘(1...𝑀)) = 𝑀) |
93 | 67, 19 | fihasheqf1od 10641 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (♯‘(1...𝑀)) = (♯‘𝐴)) |
94 | 92, 93 | eqtr3d 2189 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑀 = (♯‘𝐴)) |
95 | 94 | adantr 274 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → 𝑀 = (♯‘𝐴)) |
96 | 89, 95 | breqtrd 3986 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → 𝑢 ≤ (♯‘𝐴)) |
97 | 96 | iftrued 3508 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → if(𝑢 ≤ (♯‘𝐴), ⦋(𝐹‘𝑢) / 𝑘⦌𝐵, 1) = ⦋(𝐹‘𝑢) / 𝑘⦌𝐵) |
98 | 97, 82 | eqtrd 2187 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → if(𝑢 ≤ (♯‘𝐴), ⦋(𝐹‘𝑢) / 𝑘⦌𝐵, 1) = (𝐺‘𝑢)) |
99 | 73 | eleq1d 2223 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑢 → ((𝐺‘𝑛) ∈ ℂ ↔ (𝐺‘𝑢) ∈ ℂ)) |
100 | 22 | adantr 274 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) |
101 | 99, 100, 81 | rspcdva 2818 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → (𝐺‘𝑢) ∈ ℂ) |
102 | 98, 101 | eqeltrd 2231 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → if(𝑢 ≤ (♯‘𝐴), ⦋(𝐹‘𝑢) / 𝑘⦌𝐵, 1) ∈ ℂ) |
103 | 83, 85, 87, 102 | fvmptd3 5554 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1))‘𝑢) = if(𝑢 ≤ (♯‘𝐴), ⦋(𝐹‘𝑢) / 𝑘⦌𝐵, 1)) |
104 | 103, 97 | eqtrd 2187 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1))‘𝑢) = ⦋(𝐹‘𝑢) / 𝑘⦌𝐵) |
105 | | breq1 3964 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑢 → (𝑛 ≤ 𝑀 ↔ 𝑢 ≤ 𝑀)) |
106 | 105, 73 | ifbieq1d 3523 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑢 → if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1) = if(𝑢 ≤ 𝑀, (𝐺‘𝑢), 1)) |
107 | 89 | iftrued 3508 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → if(𝑢 ≤ 𝑀, (𝐺‘𝑢), 1) = (𝐺‘𝑢)) |
108 | 107, 101 | eqeltrd 2231 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → if(𝑢 ≤ 𝑀, (𝐺‘𝑢), 1) ∈ ℂ) |
109 | 4, 106, 87, 108 | fvmptd3 5554 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1))‘𝑢) = if(𝑢 ≤ 𝑀, (𝐺‘𝑢), 1)) |
110 | 109, 107 | eqtrd 2187 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1))‘𝑢) = (𝐺‘𝑢)) |
111 | 82, 104, 110 | 3eqtr4rd 2198 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1))‘𝑢) = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1))‘𝑢)) |
112 | | elnnuz 9454 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ ℕ ↔ 𝑝 ∈
(ℤ≥‘1)) |
113 | 112, 34 | sylan2br 286 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1))‘𝑝) ∈ ℂ) |
114 | | breq1 3964 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑝 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑝 ≤ (♯‘𝐴))) |
115 | | fveq2 5461 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑝 → (𝐹‘𝑛) = (𝐹‘𝑝)) |
116 | 115 | csbeq1d 3034 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑝 → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = ⦋(𝐹‘𝑝) / 𝑘⦌𝐵) |
117 | 114, 116 | ifbieq1d 3523 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑝 → if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1) = if(𝑝 ≤ (♯‘𝐴), ⦋(𝐹‘𝑝) / 𝑘⦌𝐵, 1)) |
118 | | simpll 519 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝜑) |
119 | | simpr 109 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑝 ≤ (♯‘𝐴)) |
120 | 94 | breq2d 3973 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑝 ≤ 𝑀 ↔ 𝑝 ≤ (♯‘𝐴))) |
121 | 120 | ad2antrr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → (𝑝 ≤ 𝑀 ↔ 𝑝 ≤ (♯‘𝐴))) |
122 | 119, 121 | mpbird 166 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑝 ≤ 𝑀) |
123 | 122, 16 | syldan 280 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑝 ∈ (1...𝑀)) |
124 | 66 | ffvelrnda 5595 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (1...𝑀)) → (𝐹‘𝑝) ∈ 𝐴) |
125 | 20 | ralrimiva 2527 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
126 | 125 | adantr 274 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (1...𝑀)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
127 | | nfcsb1v 3060 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘⦋(𝐹‘𝑝) / 𝑘⦌𝐵 |
128 | 127 | nfel1 2307 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘⦋(𝐹‘𝑝) / 𝑘⦌𝐵 ∈ ℂ |
129 | | csbeq1a 3036 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = (𝐹‘𝑝) → 𝐵 = ⦋(𝐹‘𝑝) / 𝑘⦌𝐵) |
130 | 129 | eleq1d 2223 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = (𝐹‘𝑝) → (𝐵 ∈ ℂ ↔ ⦋(𝐹‘𝑝) / 𝑘⦌𝐵 ∈ ℂ)) |
131 | 128, 130 | rspc 2807 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑝) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝐹‘𝑝) / 𝑘⦌𝐵 ∈ ℂ)) |
132 | 124, 126,
131 | sylc 62 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ (1...𝑀)) → ⦋(𝐹‘𝑝) / 𝑘⦌𝐵 ∈ ℂ) |
133 | 118, 123,
132 | syl2anc 409 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → ⦋(𝐹‘𝑝) / 𝑘⦌𝐵 ∈ ℂ) |
134 | | 1cnd 7873 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → 1 ∈
ℂ) |
135 | 94, 12 | eqeltrrd 2232 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (♯‘𝐴) ∈
ℤ) |
136 | 135 | adantr 274 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → (♯‘𝐴) ∈
ℤ) |
137 | | zdcle 9219 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑝 ∈ ℤ ∧
(♯‘𝐴) ∈
ℤ) → DECID 𝑝 ≤ (♯‘𝐴)) |
138 | 28, 136, 137 | syl2anc 409 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → DECID
𝑝 ≤ (♯‘𝐴)) |
139 | 133, 134,
138 | ifcldadc 3530 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → if(𝑝 ≤ (♯‘𝐴), ⦋(𝐹‘𝑝) / 𝑘⦌𝐵, 1) ∈ ℂ) |
140 | 83, 117, 8, 139 | fvmptd3 5554 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), ⦋(𝐹‘𝑝) / 𝑘⦌𝐵, 1)) |
141 | 140, 139 | eqeltrd 2231 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1))‘𝑝) ∈ ℂ) |
142 | 112, 141 | sylan2br 286 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤
(♯‘𝐴),
⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1))‘𝑝) ∈ ℂ) |
143 | | mulcl 7838 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (𝑝 · 𝑞) ∈ ℂ) |
144 | 143 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ)) → (𝑝 · 𝑞) ∈ ℂ) |
145 | 70, 111, 113, 142, 144 | seq3fveq 10348 |
. . . . . . . . . . . 12
⊢ (𝜑 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀)) |
146 | 19, 145 | jca 304 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀))) |
147 | | f1oeq1 5396 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝑓:(1...𝑀)–1-1-onto→𝐴 ↔ 𝐹:(1...𝑀)–1-1-onto→𝐴)) |
148 | | fveq1 5460 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝐹 → (𝑓‘𝑛) = (𝐹‘𝑛)) |
149 | 148 | csbeq1d 3034 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝐹 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) |
150 | 149 | ifeq1d 3518 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝐹 → if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1) = if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)) |
151 | 150 | mpteq2dv 4051 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝐹 → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1))) |
152 | 151 | seqeq3d 10330 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝐹 → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)))) |
153 | 152 | fveq1d 5463 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀)) |
154 | 153 | eqeq2d 2166 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀) ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀))) |
155 | 147, 154 | anbi12d 465 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → ((𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀)) ↔ (𝐹:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀)))) |
156 | 69, 146, 155 | spcedv 2798 |
. . . . . . . . . 10
⊢ (𝜑 → ∃𝑓(𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀))) |
157 | | oveq2 5822 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑀 → (1...𝑚) = (1...𝑀)) |
158 | 157 | f1oeq2d 5403 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑀 → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑀)–1-1-onto→𝐴)) |
159 | | fveq2 5461 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑀 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀)) |
160 | 159 | eqeq2d 2166 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑀 → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀))) |
161 | 158, 160 | anbi12d 465 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑀 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ (𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀)))) |
162 | 161 | exbidv 1802 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀)))) |
163 | 162 | rspcev 2813 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧
∃𝑓(𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀))) → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) |
164 | 11, 156, 163 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) |
165 | 164 | olcd 724 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
166 | | nfcv 2296 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗if(𝑘 ∈ 𝐴, 𝐵, 1) |
167 | | nfv 1505 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘 𝑗 ∈ 𝐴 |
168 | | nfcsb1v 3060 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 |
169 | | nfcv 2296 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘1 |
170 | 167, 168,
169 | nfif 3529 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘if(𝑗 ∈ 𝐴, ⦋𝑗 / 𝑘⦌𝐵, 1) |
171 | | eleq1w 2215 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) |
172 | | csbeq1a 3036 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) |
173 | 171, 172 | ifbieq1d 3523 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → if(𝑘 ∈ 𝐴, 𝐵, 1) = if(𝑗 ∈ 𝐴, ⦋𝑗 / 𝑘⦌𝐵, 1)) |
174 | 166, 170,
173 | cbvmpt 4055 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) = (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, ⦋𝑗 / 𝑘⦌𝐵, 1)) |
175 | 168 | nfel1 2307 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
176 | 172 | eleq1d 2223 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
177 | 175, 176 | rspc 2807 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
178 | 125, 177 | mpan9 279 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
179 | | breq1 3964 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑖 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑖 ≤ (♯‘𝐴))) |
180 | | fveq2 5461 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑖 → (𝑓‘𝑛) = (𝑓‘𝑖)) |
181 | 180 | csbeq1d 3034 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑖 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑖) / 𝑘⦌𝐵) |
182 | | csbcow 3038 |
. . . . . . . . . . . . . . . 16
⊢
⦋(𝑓‘𝑖) / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵 = ⦋(𝑓‘𝑖) / 𝑘⦌𝐵 |
183 | 181, 182 | eqtr4di 2205 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑖 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑖) / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵) |
184 | 179, 183 | ifbieq1d 3523 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑖 → if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1) = if(𝑖 ≤ (♯‘𝐴), ⦋(𝑓‘𝑖) / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵, 1)) |
185 | 184 | cbvmptv 4056 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)) = (𝑖 ∈ ℕ ↦ if(𝑖 ≤ (♯‘𝐴), ⦋(𝑓‘𝑖) / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵, 1)) |
186 | 174, 178,
185 | prodmodc 11452 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
187 | 36, 186 | jca 304 |
. . . . . . . . . . 11
⊢ (𝜑 → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) ∈ ℂ ∧ ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))))) |
188 | | breq2 3965 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) |
189 | 188 | anbi2d 460 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → ((∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀)))) |
190 | 189 | anbi2d 460 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → (((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))))) |
191 | 190 | rexbidv 2455 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))))) |
192 | | eqeq1 2161 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) |
193 | 192 | anbi2d 460 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
194 | 193 | exbidv 1802 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
195 | 194 | rexbidv 2455 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
196 | 191, 195 | orbi12d 783 |
. . . . . . . . . . . 12
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))))) |
197 | 196 | moi2 2889 |
. . . . . . . . . . 11
⊢ ((((seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ≤
𝑀, (𝐺‘𝑛), 1)))‘𝑀) ∈ ℂ ∧ ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) ∧ ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀)) |
198 | 187, 197 | sylan 281 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀)) |
199 | 198 | ancom2s 556 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀)) |
200 | 199 | expr 373 |
. . . . . . . 8
⊢ ((𝜑 ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) |
201 | 165, 200 | mpdan 418 |
. . . . . . 7
⊢ (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑖 ∈ (ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) |
202 | 64, 201 | syl5bir 152 |
. . . . . 6
⊢ (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) |
203 | 64, 196 | bitr3id 193 |
. . . . . . 7
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))))) |
204 | 165, 203 | syl5ibrcom 156 |
. . . . . 6
⊢ (𝜑 → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))))) |
205 | 202, 204 | impbid 128 |
. . . . 5
⊢ (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) |
206 | 205 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) ∈ ℂ) → ((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) |
207 | 206 | iota5 5148 |
. . 3
⊢ ((𝜑 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) ∈ ℂ) → (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀)) |
208 | 36, 207 | mpdan 418 |
. 2
⊢ (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀)) |
209 | 1, 208 | syl5eq 2199 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀)) |