| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-proddc 11716 | 
. 2
⊢
∏𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) | 
| 2 |   | nnuz 9637 | 
. . . . 5
⊢ ℕ =
(ℤ≥‘1) | 
| 3 |   | 1zzd 9353 | 
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) | 
| 4 |   | eqid 2196 | 
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)) | 
| 5 |   | breq1 4036 | 
. . . . . . . 8
⊢ (𝑛 = 𝑝 → (𝑛 ≤ 𝑀 ↔ 𝑝 ≤ 𝑀)) | 
| 6 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑛 = 𝑝 → (𝐺‘𝑛) = (𝐺‘𝑝)) | 
| 7 | 5, 6 | ifbieq1d 3583 | 
. . . . . . 7
⊢ (𝑛 = 𝑝 → if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1) = if(𝑝 ≤ 𝑀, (𝐺‘𝑝), 1)) | 
| 8 |   | simpr 110 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → 𝑝 ∈ ℕ) | 
| 9 |   | simpll 527 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ 𝑀) → 𝜑) | 
| 10 | 8 | anim1i 340 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ 𝑀) → (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝑀)) | 
| 11 |   | fprod.2 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 12 | 11 | nnzd 9447 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 13 |   | fznn 10164 | 
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → (𝑝 ∈ (1...𝑀) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝑀))) | 
| 14 | 12, 13 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → (𝑝 ∈ (1...𝑀) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝑀))) | 
| 15 | 14 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ 𝑀) → (𝑝 ∈ (1...𝑀) ↔ (𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝑀))) | 
| 16 | 10, 15 | mpbird 167 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ 𝑀) → 𝑝 ∈ (1...𝑀)) | 
| 17 | 6 | eleq1d 2265 | 
. . . . . . . . . 10
⊢ (𝑛 = 𝑝 → ((𝐺‘𝑛) ∈ ℂ ↔ (𝐺‘𝑝) ∈ ℂ)) | 
| 18 |   | fprod.1 | 
. . . . . . . . . . . 12
⊢ (𝑘 = (𝐹‘𝑛) → 𝐵 = 𝐶) | 
| 19 |   | fprod.3 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:(1...𝑀)–1-1-onto→𝐴) | 
| 20 |   | fprod.4 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| 21 |   | fprod.5 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐺‘𝑛) = 𝐶) | 
| 22 | 18, 11, 19, 20, 21 | fsumgcl 11551 | 
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) | 
| 23 | 22 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (1...𝑀)) → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) | 
| 24 |   | simpr 110 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (1...𝑀)) → 𝑝 ∈ (1...𝑀)) | 
| 25 | 17, 23, 24 | rspcdva 2873 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (1...𝑀)) → (𝐺‘𝑝) ∈ ℂ) | 
| 26 | 9, 16, 25 | syl2anc 411 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ 𝑀) → (𝐺‘𝑝) ∈ ℂ) | 
| 27 |   | 1cnd 8042 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑀) → 1 ∈ ℂ) | 
| 28 | 8 | nnzd 9447 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → 𝑝 ∈ ℤ) | 
| 29 | 12 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → 𝑀 ∈ ℤ) | 
| 30 |   | zdcle 9402 | 
. . . . . . . . 9
⊢ ((𝑝 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
DECID 𝑝 ≤
𝑀) | 
| 31 | 28, 29, 30 | syl2anc 411 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → DECID
𝑝 ≤ 𝑀) | 
| 32 | 26, 27, 31 | ifcldadc 3590 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → if(𝑝 ≤ 𝑀, (𝐺‘𝑝), 1) ∈ ℂ) | 
| 33 | 4, 7, 8, 32 | fvmptd3 5655 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1))‘𝑝) = if(𝑝 ≤ 𝑀, (𝐺‘𝑝), 1)) | 
| 34 | 33, 32 | eqeltrd 2273 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1))‘𝑝) ∈ ℂ) | 
| 35 | 2, 3, 34 | prodf 11703 | 
. . . 4
⊢ (𝜑 → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛),
1))):ℕ⟶ℂ) | 
| 36 | 35, 11 | ffvelcdmd 5698 | 
. . 3
⊢ (𝜑 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) ∈ ℂ) | 
| 37 |   | eleq1w 2257 | 
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (𝑖 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | 
| 38 | 37 | dcbid 839 | 
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (DECID 𝑖 ∈ 𝐴 ↔ DECID 𝑗 ∈ 𝐴)) | 
| 39 | 38 | cbvralv 2729 | 
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴 ↔ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) | 
| 40 | 39 | anbi2i 457 | 
. . . . . . . . . 10
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑖 ∈ (ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) | 
| 41 | 40 | anbi1i 458 | 
. . . . . . . . 9
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑖 ∈ (ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥))) | 
| 42 | 41 | rexbii 2504 | 
. . . . . . . 8
⊢
(∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑖 ∈ (ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥))) | 
| 43 |   | nnnn0 9256 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) | 
| 44 |   | hashfz1 10875 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ ℕ0
→ (♯‘(1...𝑚)) = 𝑚) | 
| 45 | 43, 44 | syl 14 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ →
(♯‘(1...𝑚)) =
𝑚) | 
| 46 | 45 | adantr 276 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) →
(♯‘(1...𝑚)) =
𝑚) | 
| 47 |   | 1zzd 9353 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 1 ∈
ℤ) | 
| 48 |   | nnz 9345 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℤ) | 
| 49 | 48 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑚 ∈ ℤ) | 
| 50 | 47, 49 | fzfigd 10523 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (1...𝑚) ∈ Fin) | 
| 51 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑓:(1...𝑚)–1-1-onto→𝐴) | 
| 52 | 50, 51 | fihasheqf1od 10881 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) →
(♯‘(1...𝑚)) =
(♯‘𝐴)) | 
| 53 | 46, 52 | eqtr3d 2231 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑚 = (♯‘𝐴)) | 
| 54 | 53 | breq2d 4045 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑛 ≤ 𝑚 ↔ 𝑛 ≤ (♯‘𝐴))) | 
| 55 | 54 | ifbid 3582 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1) = if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)) | 
| 56 | 55 | mpteq2dv 4124 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1))) | 
| 57 | 56 | seqeq3d 10547 | 
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))) | 
| 58 | 57 | fveq1d 5560 | 
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) | 
| 59 | 58 | eqeq2d 2208 | 
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) | 
| 60 | 59 | pm5.32da 452 | 
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) | 
| 61 | 60 | exbidv 1839 | 
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ →
(∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) | 
| 62 | 61 | rexbiia 2512 | 
. . . . . . . . 9
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) | 
| 63 | 62 | bicomi 132 | 
. . . . . . . 8
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) | 
| 64 | 42, 63 | orbi12i 765 | 
. . . . . . 7
⊢
((∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑖 ∈ (ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) | 
| 65 |   | f1of 5504 | 
. . . . . . . . . . . . 13
⊢ (𝐹:(1...𝑀)–1-1-onto→𝐴 → 𝐹:(1...𝑀)⟶𝐴) | 
| 66 | 19, 65 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:(1...𝑀)⟶𝐴) | 
| 67 | 3, 12 | fzfigd 10523 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (1...𝑀) ∈ Fin) | 
| 68 |   | fex 5791 | 
. . . . . . . . . . . 12
⊢ ((𝐹:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ Fin) → 𝐹 ∈ V) | 
| 69 | 66, 67, 68 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ V) | 
| 70 | 11, 2 | eleqtrdi 2289 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) | 
| 71 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑢 → (𝐹‘𝑛) = (𝐹‘𝑢)) | 
| 72 | 71 | csbeq1d 3091 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑢 → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = ⦋(𝐹‘𝑢) / 𝑘⦌𝐵) | 
| 73 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑢 → (𝐺‘𝑛) = (𝐺‘𝑢)) | 
| 74 | 72, 73 | eqeq12d 2211 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑢 → (⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = (𝐺‘𝑛) ↔ ⦋(𝐹‘𝑢) / 𝑘⦌𝐵 = (𝐺‘𝑢))) | 
| 75 | 66 | ffvelcdmda 5697 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → (𝐹‘𝑛) ∈ 𝐴) | 
| 76 | 18 | adantl 277 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑀)) ∧ 𝑘 = (𝐹‘𝑛)) → 𝐵 = 𝐶) | 
| 77 | 75, 76 | csbied 3131 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = 𝐶) | 
| 78 | 77, 21 | eqtr4d 2232 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑀)) → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = (𝐺‘𝑛)) | 
| 79 | 78 | ralrimiva 2570 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑛 ∈ (1...𝑀)⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = (𝐺‘𝑛)) | 
| 80 | 79 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ∀𝑛 ∈ (1...𝑀)⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = (𝐺‘𝑛)) | 
| 81 |   | simpr 110 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → 𝑢 ∈ (1...𝑀)) | 
| 82 | 74, 80, 81 | rspcdva 2873 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ⦋(𝐹‘𝑢) / 𝑘⦌𝐵 = (𝐺‘𝑢)) | 
| 83 |   | eqid 2196 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)) | 
| 84 |   | breq1 4036 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑢 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑢 ≤ (♯‘𝐴))) | 
| 85 | 84, 72 | ifbieq1d 3583 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑢 → if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1) = if(𝑢 ≤ (♯‘𝐴), ⦋(𝐹‘𝑢) / 𝑘⦌𝐵, 1)) | 
| 86 |   | elfznn 10129 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ (1...𝑀) → 𝑢 ∈ ℕ) | 
| 87 | 86 | adantl 277 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → 𝑢 ∈ ℕ) | 
| 88 |   | elfzle2 10103 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 ∈ (1...𝑀) → 𝑢 ≤ 𝑀) | 
| 89 | 88 | adantl 277 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → 𝑢 ≤ 𝑀) | 
| 90 | 11 | nnnn0d 9302 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑀 ∈
ℕ0) | 
| 91 |   | hashfz1 10875 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑀 ∈ ℕ0
→ (♯‘(1...𝑀)) = 𝑀) | 
| 92 | 90, 91 | syl 14 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (♯‘(1...𝑀)) = 𝑀) | 
| 93 | 67, 19 | fihasheqf1od 10881 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (♯‘(1...𝑀)) = (♯‘𝐴)) | 
| 94 | 92, 93 | eqtr3d 2231 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑀 = (♯‘𝐴)) | 
| 95 | 94 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → 𝑀 = (♯‘𝐴)) | 
| 96 | 89, 95 | breqtrd 4059 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → 𝑢 ≤ (♯‘𝐴)) | 
| 97 | 96 | iftrued 3568 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → if(𝑢 ≤ (♯‘𝐴), ⦋(𝐹‘𝑢) / 𝑘⦌𝐵, 1) = ⦋(𝐹‘𝑢) / 𝑘⦌𝐵) | 
| 98 | 97, 82 | eqtrd 2229 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → if(𝑢 ≤ (♯‘𝐴), ⦋(𝐹‘𝑢) / 𝑘⦌𝐵, 1) = (𝐺‘𝑢)) | 
| 99 | 73 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑢 → ((𝐺‘𝑛) ∈ ℂ ↔ (𝐺‘𝑢) ∈ ℂ)) | 
| 100 | 22 | adantr 276 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ∀𝑛 ∈ (1...𝑀)(𝐺‘𝑛) ∈ ℂ) | 
| 101 | 99, 100, 81 | rspcdva 2873 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → (𝐺‘𝑢) ∈ ℂ) | 
| 102 | 98, 101 | eqeltrd 2273 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → if(𝑢 ≤ (♯‘𝐴), ⦋(𝐹‘𝑢) / 𝑘⦌𝐵, 1) ∈ ℂ) | 
| 103 | 83, 85, 87, 102 | fvmptd3 5655 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1))‘𝑢) = if(𝑢 ≤ (♯‘𝐴), ⦋(𝐹‘𝑢) / 𝑘⦌𝐵, 1)) | 
| 104 | 103, 97 | eqtrd 2229 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1))‘𝑢) = ⦋(𝐹‘𝑢) / 𝑘⦌𝐵) | 
| 105 |   | breq1 4036 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑢 → (𝑛 ≤ 𝑀 ↔ 𝑢 ≤ 𝑀)) | 
| 106 | 105, 73 | ifbieq1d 3583 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑢 → if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1) = if(𝑢 ≤ 𝑀, (𝐺‘𝑢), 1)) | 
| 107 | 89 | iftrued 3568 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → if(𝑢 ≤ 𝑀, (𝐺‘𝑢), 1) = (𝐺‘𝑢)) | 
| 108 | 107, 101 | eqeltrd 2273 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → if(𝑢 ≤ 𝑀, (𝐺‘𝑢), 1) ∈ ℂ) | 
| 109 | 4, 106, 87, 108 | fvmptd3 5655 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1))‘𝑢) = if(𝑢 ≤ 𝑀, (𝐺‘𝑢), 1)) | 
| 110 | 109, 107 | eqtrd 2229 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1))‘𝑢) = (𝐺‘𝑢)) | 
| 111 | 82, 104, 110 | 3eqtr4rd 2240 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1))‘𝑢) = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1))‘𝑢)) | 
| 112 |   | elnnuz 9638 | 
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ ℕ ↔ 𝑝 ∈
(ℤ≥‘1)) | 
| 113 | 112, 34 | sylan2br 288 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1))‘𝑝) ∈ ℂ) | 
| 114 |   | breq1 4036 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑝 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑝 ≤ (♯‘𝐴))) | 
| 115 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑝 → (𝐹‘𝑛) = (𝐹‘𝑝)) | 
| 116 | 115 | csbeq1d 3091 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑝 → ⦋(𝐹‘𝑛) / 𝑘⦌𝐵 = ⦋(𝐹‘𝑝) / 𝑘⦌𝐵) | 
| 117 | 114, 116 | ifbieq1d 3583 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑝 → if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1) = if(𝑝 ≤ (♯‘𝐴), ⦋(𝐹‘𝑝) / 𝑘⦌𝐵, 1)) | 
| 118 |   | simpll 527 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝜑) | 
| 119 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑝 ≤ (♯‘𝐴)) | 
| 120 | 94 | breq2d 4045 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑝 ≤ 𝑀 ↔ 𝑝 ≤ (♯‘𝐴))) | 
| 121 | 120 | ad2antrr 488 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → (𝑝 ≤ 𝑀 ↔ 𝑝 ≤ (♯‘𝐴))) | 
| 122 | 119, 121 | mpbird 167 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑝 ≤ 𝑀) | 
| 123 | 122, 16 | syldan 282 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑝 ∈ (1...𝑀)) | 
| 124 | 66 | ffvelcdmda 5697 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (1...𝑀)) → (𝐹‘𝑝) ∈ 𝐴) | 
| 125 | 20 | ralrimiva 2570 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 126 | 125 | adantr 276 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (1...𝑀)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 127 |   | nfcsb1v 3117 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘⦋(𝐹‘𝑝) / 𝑘⦌𝐵 | 
| 128 | 127 | nfel1 2350 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘⦋(𝐹‘𝑝) / 𝑘⦌𝐵 ∈ ℂ | 
| 129 |   | csbeq1a 3093 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = (𝐹‘𝑝) → 𝐵 = ⦋(𝐹‘𝑝) / 𝑘⦌𝐵) | 
| 130 | 129 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = (𝐹‘𝑝) → (𝐵 ∈ ℂ ↔ ⦋(𝐹‘𝑝) / 𝑘⦌𝐵 ∈ ℂ)) | 
| 131 | 128, 130 | rspc 2862 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑝) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝐹‘𝑝) / 𝑘⦌𝐵 ∈ ℂ)) | 
| 132 | 124, 126,
131 | sylc 62 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ (1...𝑀)) → ⦋(𝐹‘𝑝) / 𝑘⦌𝐵 ∈ ℂ) | 
| 133 | 118, 123,
132 | syl2anc 411 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → ⦋(𝐹‘𝑝) / 𝑘⦌𝐵 ∈ ℂ) | 
| 134 |   | 1cnd 8042 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑝 ∈ ℕ) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → 1 ∈
ℂ) | 
| 135 | 94, 12 | eqeltrrd 2274 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (♯‘𝐴) ∈
ℤ) | 
| 136 | 135 | adantr 276 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → (♯‘𝐴) ∈
ℤ) | 
| 137 |   | zdcle 9402 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑝 ∈ ℤ ∧
(♯‘𝐴) ∈
ℤ) → DECID 𝑝 ≤ (♯‘𝐴)) | 
| 138 | 28, 136, 137 | syl2anc 411 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → DECID
𝑝 ≤ (♯‘𝐴)) | 
| 139 | 133, 134,
138 | ifcldadc 3590 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → if(𝑝 ≤ (♯‘𝐴), ⦋(𝐹‘𝑝) / 𝑘⦌𝐵, 1) ∈ ℂ) | 
| 140 | 83, 117, 8, 139 | fvmptd3 5655 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), ⦋(𝐹‘𝑝) / 𝑘⦌𝐵, 1)) | 
| 141 | 140, 139 | eqeltrd 2273 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1))‘𝑝) ∈ ℂ) | 
| 142 | 112, 141 | sylan2br 288 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ if(𝑛 ≤
(♯‘𝐴),
⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1))‘𝑝) ∈ ℂ) | 
| 143 |   | mulcl 8006 | 
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (𝑝 · 𝑞) ∈ ℂ) | 
| 144 | 143 | adantl 277 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ)) → (𝑝 · 𝑞) ∈ ℂ) | 
| 145 | 70, 111, 113, 142, 144 | seq3fveq 10571 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀)) | 
| 146 | 19, 145 | jca 306 | 
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀))) | 
| 147 |   | f1oeq1 5492 | 
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → (𝑓:(1...𝑀)–1-1-onto→𝐴 ↔ 𝐹:(1...𝑀)–1-1-onto→𝐴)) | 
| 148 |   | fveq1 5557 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝐹 → (𝑓‘𝑛) = (𝐹‘𝑛)) | 
| 149 | 148 | csbeq1d 3091 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝐹 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝐹‘𝑛) / 𝑘⦌𝐵) | 
| 150 | 149 | ifeq1d 3578 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝐹 → if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1) = if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)) | 
| 151 | 150 | mpteq2dv 4124 | 
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝐹 → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1))) | 
| 152 | 151 | seqeq3d 10547 | 
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝐹 → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)))) | 
| 153 | 152 | fveq1d 5560 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝐹 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀)) | 
| 154 | 153 | eqeq2d 2208 | 
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐹 → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀) ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀))) | 
| 155 | 147, 154 | anbi12d 473 | 
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → ((𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀)) ↔ (𝐹:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝐹‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀)))) | 
| 156 | 69, 146, 155 | spcedv 2853 | 
. . . . . . . . . 10
⊢ (𝜑 → ∃𝑓(𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀))) | 
| 157 |   | oveq2 5930 | 
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑀 → (1...𝑚) = (1...𝑀)) | 
| 158 | 157 | f1oeq2d 5500 | 
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑀 → (𝑓:(1...𝑚)–1-1-onto→𝐴 ↔ 𝑓:(1...𝑀)–1-1-onto→𝐴)) | 
| 159 |   | fveq2 5558 | 
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑀 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀)) | 
| 160 | 159 | eqeq2d 2208 | 
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑀 → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀))) | 
| 161 | 158, 160 | anbi12d 473 | 
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑀 → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ (𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀)))) | 
| 162 | 161 | exbidv 1839 | 
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀)))) | 
| 163 | 162 | rspcev 2868 | 
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧
∃𝑓(𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑀))) → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) | 
| 164 | 11, 156, 163 | syl2anc 411 | 
. . . . . . . . 9
⊢ (𝜑 → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) | 
| 165 | 164 | olcd 735 | 
. . . . . . . 8
⊢ (𝜑 → (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) | 
| 166 |   | nfcv 2339 | 
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗if(𝑘 ∈ 𝐴, 𝐵, 1) | 
| 167 |   | nfv 1542 | 
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘 𝑗 ∈ 𝐴 | 
| 168 |   | nfcsb1v 3117 | 
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | 
| 169 |   | nfcv 2339 | 
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘1 | 
| 170 | 167, 168,
169 | nfif 3589 | 
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘if(𝑗 ∈ 𝐴, ⦋𝑗 / 𝑘⦌𝐵, 1) | 
| 171 |   | eleq1w 2257 | 
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | 
| 172 |   | csbeq1a 3093 | 
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | 
| 173 | 171, 172 | ifbieq1d 3583 | 
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → if(𝑘 ∈ 𝐴, 𝐵, 1) = if(𝑗 ∈ 𝐴, ⦋𝑗 / 𝑘⦌𝐵, 1)) | 
| 174 | 166, 170,
173 | cbvmpt 4128 | 
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) = (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, ⦋𝑗 / 𝑘⦌𝐵, 1)) | 
| 175 | 168 | nfel1 2350 | 
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ | 
| 176 | 172 | eleq1d 2265 | 
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) | 
| 177 | 175, 176 | rspc 2862 | 
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) | 
| 178 | 125, 177 | mpan9 281 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) | 
| 179 |   | breq1 4036 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑖 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑖 ≤ (♯‘𝐴))) | 
| 180 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑖 → (𝑓‘𝑛) = (𝑓‘𝑖)) | 
| 181 | 180 | csbeq1d 3091 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑖 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑖) / 𝑘⦌𝐵) | 
| 182 |   | csbcow 3095 | 
. . . . . . . . . . . . . . . 16
⊢
⦋(𝑓‘𝑖) / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵 = ⦋(𝑓‘𝑖) / 𝑘⦌𝐵 | 
| 183 | 181, 182 | eqtr4di 2247 | 
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑖 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑖) / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵) | 
| 184 | 179, 183 | ifbieq1d 3583 | 
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑖 → if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1) = if(𝑖 ≤ (♯‘𝐴), ⦋(𝑓‘𝑖) / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵, 1)) | 
| 185 | 184 | cbvmptv 4129 | 
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)) = (𝑖 ∈ ℕ ↦ if(𝑖 ≤ (♯‘𝐴), ⦋(𝑓‘𝑖) / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵, 1)) | 
| 186 | 174, 178,
185 | prodmodc 11743 | 
. . . . . . . . . . . 12
⊢ (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) | 
| 187 | 36, 186 | jca 306 | 
. . . . . . . . . . 11
⊢ (𝜑 → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) ∈ ℂ ∧ ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))))) | 
| 188 |   | breq2 4037 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) | 
| 189 | 188 | anbi2d 464 | 
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → ((∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀)))) | 
| 190 | 189 | anbi2d 464 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → (((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))))) | 
| 191 | 190 | rexbidv 2498 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))))) | 
| 192 |   | eqeq1 2203 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) | 
| 193 | 192 | anbi2d 464 | 
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) | 
| 194 | 193 | exbidv 1839 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) | 
| 195 | 194 | rexbidv 2498 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) | 
| 196 | 191, 195 | orbi12d 794 | 
. . . . . . . . . . . 12
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))))) | 
| 197 | 196 | moi2 2945 | 
. . . . . . . . . . 11
⊢ ((((seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ≤
𝑀, (𝐺‘𝑛), 1)))‘𝑀) ∈ ℂ ∧ ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) ∧ ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀)) | 
| 198 | 187, 197 | sylan 283 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀)) | 
| 199 | 198 | ancom2s 566 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀)) | 
| 200 | 199 | expr 375 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) | 
| 201 | 165, 200 | mpdan 421 | 
. . . . . . 7
⊢ (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑖 ∈ (ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) | 
| 202 | 64, 201 | biimtrrid 153 | 
. . . . . 6
⊢ (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) | 
| 203 | 64, 196 | bitr3id 194 | 
. . . . . . 7
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑖 ∈
(ℤ≥‘𝑚)DECID 𝑖 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))))) | 
| 204 | 165, 203 | syl5ibrcom 157 | 
. . . . . 6
⊢ (𝜑 → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) → (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))))) | 
| 205 | 202, 204 | impbid 129 | 
. . . . 5
⊢ (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) | 
| 206 | 205 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) ∈ ℂ) → ((∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀))) | 
| 207 | 206 | iota5 5240 | 
. . 3
⊢ ((𝜑 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀) ∈ ℂ) → (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀)) | 
| 208 | 36, 207 | mpdan 421 | 
. 2
⊢ (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀)) | 
| 209 | 1, 208 | eqtrid 2241 | 
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, (𝐺‘𝑛), 1)))‘𝑀)) |