ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodseq GIF version

Theorem fprodseq 11765
Description: The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017.) (Revised by Jim Kingdon, 15-Jul-2024.)
Hypotheses
Ref Expression
fprod.1 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
fprod.2 (𝜑𝑀 ∈ ℕ)
fprod.3 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
fprod.4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprod.5 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
Assertion
Ref Expression
fprodseq (𝜑 → ∏𝑘𝐴 𝐵 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑛   𝐶,𝑘   𝑘,𝐹,𝑛   𝑘,𝐺,𝑛   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑛)

Proof of Theorem fprodseq
Dummy variables 𝑓 𝑖 𝑗 𝑚 𝑥 𝑝 𝑞 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-proddc 11733 . 2 𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
2 nnuz 9654 . . . . 5 ℕ = (ℤ‘1)
3 1zzd 9370 . . . . 5 (𝜑 → 1 ∈ ℤ)
4 eqid 2196 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1))
5 breq1 4037 . . . . . . . 8 (𝑛 = 𝑝 → (𝑛𝑀𝑝𝑀))
6 fveq2 5561 . . . . . . . 8 (𝑛 = 𝑝 → (𝐺𝑛) = (𝐺𝑝))
75, 6ifbieq1d 3584 . . . . . . 7 (𝑛 = 𝑝 → if(𝑛𝑀, (𝐺𝑛), 1) = if(𝑝𝑀, (𝐺𝑝), 1))
8 simpr 110 . . . . . . 7 ((𝜑𝑝 ∈ ℕ) → 𝑝 ∈ ℕ)
9 simpll 527 . . . . . . . . 9 (((𝜑𝑝 ∈ ℕ) ∧ 𝑝𝑀) → 𝜑)
108anim1i 340 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℕ) ∧ 𝑝𝑀) → (𝑝 ∈ ℕ ∧ 𝑝𝑀))
11 fprod.2 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
1211nnzd 9464 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
13 fznn 10181 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑝 ∈ (1...𝑀) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝑀)))
1412, 13syl 14 . . . . . . . . . . 11 (𝜑 → (𝑝 ∈ (1...𝑀) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝑀)))
1514ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℕ) ∧ 𝑝𝑀) → (𝑝 ∈ (1...𝑀) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝑀)))
1610, 15mpbird 167 . . . . . . . . 9 (((𝜑𝑝 ∈ ℕ) ∧ 𝑝𝑀) → 𝑝 ∈ (1...𝑀))
176eleq1d 2265 . . . . . . . . . 10 (𝑛 = 𝑝 → ((𝐺𝑛) ∈ ℂ ↔ (𝐺𝑝) ∈ ℂ))
18 fprod.1 . . . . . . . . . . . 12 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
19 fprod.3 . . . . . . . . . . . 12 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
20 fprod.4 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
21 fprod.5 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
2218, 11, 19, 20, 21fsumgcl 11568 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
2322adantr 276 . . . . . . . . . 10 ((𝜑𝑝 ∈ (1...𝑀)) → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
24 simpr 110 . . . . . . . . . 10 ((𝜑𝑝 ∈ (1...𝑀)) → 𝑝 ∈ (1...𝑀))
2517, 23, 24rspcdva 2873 . . . . . . . . 9 ((𝜑𝑝 ∈ (1...𝑀)) → (𝐺𝑝) ∈ ℂ)
269, 16, 25syl2anc 411 . . . . . . . 8 (((𝜑𝑝 ∈ ℕ) ∧ 𝑝𝑀) → (𝐺𝑝) ∈ ℂ)
27 1cnd 8059 . . . . . . . 8 (((𝜑𝑝 ∈ ℕ) ∧ ¬ 𝑝𝑀) → 1 ∈ ℂ)
288nnzd 9464 . . . . . . . . 9 ((𝜑𝑝 ∈ ℕ) → 𝑝 ∈ ℤ)
2912adantr 276 . . . . . . . . 9 ((𝜑𝑝 ∈ ℕ) → 𝑀 ∈ ℤ)
30 zdcle 9419 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑝𝑀)
3128, 29, 30syl2anc 411 . . . . . . . 8 ((𝜑𝑝 ∈ ℕ) → DECID 𝑝𝑀)
3226, 27, 31ifcldadc 3591 . . . . . . 7 ((𝜑𝑝 ∈ ℕ) → if(𝑝𝑀, (𝐺𝑝), 1) ∈ ℂ)
334, 7, 8, 32fvmptd3 5658 . . . . . 6 ((𝜑𝑝 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1))‘𝑝) = if(𝑝𝑀, (𝐺𝑝), 1))
3433, 32eqeltrd 2273 . . . . 5 ((𝜑𝑝 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1))‘𝑝) ∈ ℂ)
352, 3, 34prodf 11720 . . . 4 (𝜑 → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1))):ℕ⟶ℂ)
3635, 11ffvelcdmd 5701 . . 3 (𝜑 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) ∈ ℂ)
37 eleq1w 2257 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑖𝐴𝑗𝐴))
3837dcbid 839 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (DECID 𝑖𝐴DECID 𝑗𝐴))
3938cbvralv 2729 . . . . . . . . . . 11 (∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴 ↔ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
4039anbi2i 457 . . . . . . . . . 10 ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴))
4140anbi1i 458 . . . . . . . . 9 (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)))
4241rexbii 2504 . . . . . . . 8 (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)))
43 nnnn0 9273 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
44 hashfz1 10892 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ0 → (♯‘(1...𝑚)) = 𝑚)
4543, 44syl 14 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → (♯‘(1...𝑚)) = 𝑚)
4645adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (♯‘(1...𝑚)) = 𝑚)
47 1zzd 9370 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 1 ∈ ℤ)
48 nnz 9362 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
4948adantr 276 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑚 ∈ ℤ)
5047, 49fzfigd 10540 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (1...𝑚) ∈ Fin)
51 simpr 110 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑓:(1...𝑚)–1-1-onto𝐴)
5250, 51fihasheqf1od 10898 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (♯‘(1...𝑚)) = (♯‘𝐴))
5346, 52eqtr3d 2231 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑚 = (♯‘𝐴))
5453breq2d 4046 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑛𝑚𝑛 ≤ (♯‘𝐴)))
5554ifbid 3583 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1) = if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1))
5655mpteq2dv 4125 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))
5756seqeq3d 10564 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1))))
5857fveq1d 5563 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
5958eqeq2d 2208 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))
6059pm5.32da 452 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
6160exbidv 1839 . . . . . . . . . 10 (𝑚 ∈ ℕ → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
6261rexbiia 2512 . . . . . . . . 9 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))
6362bicomi 132 . . . . . . . 8 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))
6442, 63orbi12i 765 . . . . . . 7 ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
65 f1of 5507 . . . . . . . . . . . . 13 (𝐹:(1...𝑀)–1-1-onto𝐴𝐹:(1...𝑀)⟶𝐴)
6619, 65syl 14 . . . . . . . . . . . 12 (𝜑𝐹:(1...𝑀)⟶𝐴)
673, 12fzfigd 10540 . . . . . . . . . . . 12 (𝜑 → (1...𝑀) ∈ Fin)
68 fex 5794 . . . . . . . . . . . 12 ((𝐹:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ Fin) → 𝐹 ∈ V)
6966, 67, 68syl2anc 411 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
7011, 2eleqtrdi 2289 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ‘1))
71 fveq2 5561 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑢 → (𝐹𝑛) = (𝐹𝑢))
7271csbeq1d 3091 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑢(𝐹𝑛) / 𝑘𝐵 = (𝐹𝑢) / 𝑘𝐵)
73 fveq2 5561 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑢 → (𝐺𝑛) = (𝐺𝑢))
7472, 73eqeq12d 2211 . . . . . . . . . . . . . . 15 (𝑛 = 𝑢 → ((𝐹𝑛) / 𝑘𝐵 = (𝐺𝑛) ↔ (𝐹𝑢) / 𝑘𝐵 = (𝐺𝑢)))
7566ffvelcdmda 5700 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) ∈ 𝐴)
7618adantl 277 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ (1...𝑀)) ∧ 𝑘 = (𝐹𝑛)) → 𝐵 = 𝐶)
7775, 76csbied 3131 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) / 𝑘𝐵 = 𝐶)
7877, 21eqtr4d 2232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐹𝑛) / 𝑘𝐵 = (𝐺𝑛))
7978ralrimiva 2570 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐹𝑛) / 𝑘𝐵 = (𝐺𝑛))
8079adantr 276 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (1...𝑀)) → ∀𝑛 ∈ (1...𝑀)(𝐹𝑛) / 𝑘𝐵 = (𝐺𝑛))
81 simpr 110 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (1...𝑀)) → 𝑢 ∈ (1...𝑀))
8274, 80, 81rspcdva 2873 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (1...𝑀)) → (𝐹𝑢) / 𝑘𝐵 = (𝐺𝑢))
83 eqid 2196 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1))
84 breq1 4037 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑢 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑢 ≤ (♯‘𝐴)))
8584, 72ifbieq1d 3584 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑢 → if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1) = if(𝑢 ≤ (♯‘𝐴), (𝐹𝑢) / 𝑘𝐵, 1))
86 elfznn 10146 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (1...𝑀) → 𝑢 ∈ ℕ)
8786adantl 277 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (1...𝑀)) → 𝑢 ∈ ℕ)
88 elfzle2 10120 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ∈ (1...𝑀) → 𝑢𝑀)
8988adantl 277 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (1...𝑀)) → 𝑢𝑀)
9011nnnn0d 9319 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℕ0)
91 hashfz1 10892 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
9290, 91syl 14 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
9367, 19fihasheqf1od 10898 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (♯‘(1...𝑀)) = (♯‘𝐴))
9492, 93eqtr3d 2231 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑀 = (♯‘𝐴))
9594adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (1...𝑀)) → 𝑀 = (♯‘𝐴))
9689, 95breqtrd 4060 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (1...𝑀)) → 𝑢 ≤ (♯‘𝐴))
9796iftrued 3569 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (1...𝑀)) → if(𝑢 ≤ (♯‘𝐴), (𝐹𝑢) / 𝑘𝐵, 1) = (𝐹𝑢) / 𝑘𝐵)
9897, 82eqtrd 2229 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (1...𝑀)) → if(𝑢 ≤ (♯‘𝐴), (𝐹𝑢) / 𝑘𝐵, 1) = (𝐺𝑢))
9973eleq1d 2265 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑢 → ((𝐺𝑛) ∈ ℂ ↔ (𝐺𝑢) ∈ ℂ))
10022adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (1...𝑀)) → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
10199, 100, 81rspcdva 2873 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (1...𝑀)) → (𝐺𝑢) ∈ ℂ)
10298, 101eqeltrd 2273 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (1...𝑀)) → if(𝑢 ≤ (♯‘𝐴), (𝐹𝑢) / 𝑘𝐵, 1) ∈ ℂ)
10383, 85, 87, 102fvmptd3 5658 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1))‘𝑢) = if(𝑢 ≤ (♯‘𝐴), (𝐹𝑢) / 𝑘𝐵, 1))
104103, 97eqtrd 2229 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1))‘𝑢) = (𝐹𝑢) / 𝑘𝐵)
105 breq1 4037 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑢 → (𝑛𝑀𝑢𝑀))
106105, 73ifbieq1d 3584 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑢 → if(𝑛𝑀, (𝐺𝑛), 1) = if(𝑢𝑀, (𝐺𝑢), 1))
10789iftrued 3569 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (1...𝑀)) → if(𝑢𝑀, (𝐺𝑢), 1) = (𝐺𝑢))
108107, 101eqeltrd 2273 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (1...𝑀)) → if(𝑢𝑀, (𝐺𝑢), 1) ∈ ℂ)
1094, 106, 87, 108fvmptd3 5658 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1))‘𝑢) = if(𝑢𝑀, (𝐺𝑢), 1))
110109, 107eqtrd 2229 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1))‘𝑢) = (𝐺𝑢))
11182, 104, 1103eqtr4rd 2240 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1))‘𝑢) = ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1))‘𝑢))
112 elnnuz 9655 . . . . . . . . . . . . . 14 (𝑝 ∈ ℕ ↔ 𝑝 ∈ (ℤ‘1))
113112, 34sylan2br 288 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1))‘𝑝) ∈ ℂ)
114 breq1 4037 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑝 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑝 ≤ (♯‘𝐴)))
115 fveq2 5561 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑝 → (𝐹𝑛) = (𝐹𝑝))
116115csbeq1d 3091 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑝(𝐹𝑛) / 𝑘𝐵 = (𝐹𝑝) / 𝑘𝐵)
117114, 116ifbieq1d 3584 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑝 → if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1) = if(𝑝 ≤ (♯‘𝐴), (𝐹𝑝) / 𝑘𝐵, 1))
118 simpll 527 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝜑)
119 simpr 110 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑝 ≤ (♯‘𝐴))
12094breq2d 4046 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑝𝑀𝑝 ≤ (♯‘𝐴)))
121120ad2antrr 488 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → (𝑝𝑀𝑝 ≤ (♯‘𝐴)))
122119, 121mpbird 167 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑝𝑀)
123122, 16syldan 282 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → 𝑝 ∈ (1...𝑀))
12466ffvelcdmda 5700 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (1...𝑀)) → (𝐹𝑝) ∈ 𝐴)
12520ralrimiva 2570 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
126125adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (1...𝑀)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
127 nfcsb1v 3117 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝐹𝑝) / 𝑘𝐵
128127nfel1 2350 . . . . . . . . . . . . . . . . . . . 20 𝑘(𝐹𝑝) / 𝑘𝐵 ∈ ℂ
129 csbeq1a 3093 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = (𝐹𝑝) → 𝐵 = (𝐹𝑝) / 𝑘𝐵)
130129eleq1d 2265 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = (𝐹𝑝) → (𝐵 ∈ ℂ ↔ (𝐹𝑝) / 𝑘𝐵 ∈ ℂ))
131128, 130rspc 2862 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑝) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝐹𝑝) / 𝑘𝐵 ∈ ℂ))
132124, 126, 131sylc 62 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (1...𝑀)) → (𝐹𝑝) / 𝑘𝐵 ∈ ℂ)
133118, 123, 132syl2anc 411 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℕ) ∧ 𝑝 ≤ (♯‘𝐴)) → (𝐹𝑝) / 𝑘𝐵 ∈ ℂ)
134 1cnd 8059 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℕ) ∧ ¬ 𝑝 ≤ (♯‘𝐴)) → 1 ∈ ℂ)
13594, 12eqeltrrd 2274 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (♯‘𝐴) ∈ ℤ)
136135adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ ℕ) → (♯‘𝐴) ∈ ℤ)
137 zdcle 9419 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑝 ≤ (♯‘𝐴))
13828, 136, 137syl2anc 411 . . . . . . . . . . . . . . . . 17 ((𝜑𝑝 ∈ ℕ) → DECID 𝑝 ≤ (♯‘𝐴))
139133, 134, 138ifcldadc 3591 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℕ) → if(𝑝 ≤ (♯‘𝐴), (𝐹𝑝) / 𝑘𝐵, 1) ∈ ℂ)
14083, 117, 8, 139fvmptd3 5658 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1))‘𝑝) = if(𝑝 ≤ (♯‘𝐴), (𝐹𝑝) / 𝑘𝐵, 1))
141140, 139eqeltrd 2273 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1))‘𝑝) ∈ ℂ)
142112, 141sylan2br 288 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1))‘𝑝) ∈ ℂ)
143 mulcl 8023 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (𝑝 · 𝑞) ∈ ℂ)
144143adantl 277 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ)) → (𝑝 · 𝑞) ∈ ℂ)
14570, 111, 113, 142, 144seq3fveq 10588 . . . . . . . . . . . 12 (𝜑 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1)))‘𝑀))
14619, 145jca 306 . . . . . . . . . . 11 (𝜑 → (𝐹:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1)))‘𝑀)))
147 f1oeq1 5495 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓:(1...𝑀)–1-1-onto𝐴𝐹:(1...𝑀)–1-1-onto𝐴))
148 fveq1 5560 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝐹 → (𝑓𝑛) = (𝐹𝑛))
149148csbeq1d 3091 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝐹(𝑓𝑛) / 𝑘𝐵 = (𝐹𝑛) / 𝑘𝐵)
150149ifeq1d 3579 . . . . . . . . . . . . . . . 16 (𝑓 = 𝐹 → if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1) = if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1))
151150mpteq2dv 4125 . . . . . . . . . . . . . . 15 (𝑓 = 𝐹 → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1)))
152151seqeq3d 10564 . . . . . . . . . . . . . 14 (𝑓 = 𝐹 → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1))))
153152fveq1d 5563 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1)))‘𝑀))
154153eqeq2d 2208 . . . . . . . . . . . 12 (𝑓 = 𝐹 → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑀) ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1)))‘𝑀)))
155147, 154anbi12d 473 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑀)) ↔ (𝐹:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝐹𝑛) / 𝑘𝐵, 1)))‘𝑀))))
15669, 146, 155spcedv 2853 . . . . . . . . . 10 (𝜑 → ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑀)))
157 oveq2 5933 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → (1...𝑚) = (1...𝑀))
158157f1oeq2d 5503 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑀)–1-1-onto𝐴))
159 fveq2 5561 . . . . . . . . . . . . . 14 (𝑚 = 𝑀 → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑀))
160159eqeq2d 2208 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚) ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑀)))
161158, 160anbi12d 473 . . . . . . . . . . . 12 (𝑚 = 𝑀 → ((𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)) ↔ (𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑀))))
162161exbidv 1839 . . . . . . . . . . 11 (𝑚 = 𝑀 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑀))))
163162rspcev 2868 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑀))) → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))
16411, 156, 163syl2anc 411 . . . . . . . . 9 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))
165164olcd 735 . . . . . . . 8 (𝜑 → (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
166 nfcv 2339 . . . . . . . . . . . . . 14 𝑗if(𝑘𝐴, 𝐵, 1)
167 nfv 1542 . . . . . . . . . . . . . . 15 𝑘 𝑗𝐴
168 nfcsb1v 3117 . . . . . . . . . . . . . . 15 𝑘𝑗 / 𝑘𝐵
169 nfcv 2339 . . . . . . . . . . . . . . 15 𝑘1
170167, 168, 169nfif 3590 . . . . . . . . . . . . . 14 𝑘if(𝑗𝐴, 𝑗 / 𝑘𝐵, 1)
171 eleq1w 2257 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
172 csbeq1a 3093 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
173171, 172ifbieq1d 3584 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → if(𝑘𝐴, 𝐵, 1) = if(𝑗𝐴, 𝑗 / 𝑘𝐵, 1))
174166, 170, 173cbvmpt 4129 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)) = (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝑗 / 𝑘𝐵, 1))
175168nfel1 2350 . . . . . . . . . . . . . . 15 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
176172eleq1d 2265 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
177175, 176rspc 2862 . . . . . . . . . . . . . 14 (𝑗𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑗 / 𝑘𝐵 ∈ ℂ))
178125, 177mpan9 281 . . . . . . . . . . . . 13 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
179 breq1 4037 . . . . . . . . . . . . . . 15 (𝑛 = 𝑖 → (𝑛 ≤ (♯‘𝐴) ↔ 𝑖 ≤ (♯‘𝐴)))
180 fveq2 5561 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
181180csbeq1d 3091 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑖(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑖) / 𝑘𝐵)
182 csbcow 3095 . . . . . . . . . . . . . . . 16 (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵 = (𝑓𝑖) / 𝑘𝐵
183181, 182eqtr4di 2247 . . . . . . . . . . . . . . 15 (𝑛 = 𝑖(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵)
184179, 183ifbieq1d 3584 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 → if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1) = if(𝑖 ≤ (♯‘𝐴), (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵, 1))
185184cbvmptv 4130 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)) = (𝑖 ∈ ℕ ↦ if(𝑖 ≤ (♯‘𝐴), (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵, 1))
186174, 178, 185prodmodc 11760 . . . . . . . . . . . 12 (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
18736, 186jca 306 . . . . . . . . . . 11 (𝜑 → ((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) ∈ ℂ ∧ ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))))
188 breq2 4038 . . . . . . . . . . . . . . . 16 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀)))
189188anbi2d 464 . . . . . . . . . . . . . . 15 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) → ((∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))))
190189anbi2d 464 . . . . . . . . . . . . . 14 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) → (((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀)))))
191190rexbidv 2498 . . . . . . . . . . . . 13 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) → (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀)))))
192 eqeq1 2203 . . . . . . . . . . . . . . . 16 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚) ↔ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))
193192anbi2d 464 . . . . . . . . . . . . . . 15 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
194193exbidv 1839 . . . . . . . . . . . . . 14 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
195194rexbidv 2498 . . . . . . . . . . . . 13 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
196191, 195orbi12d 794 . . . . . . . . . . . 12 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))))
197196moi2 2945 . . . . . . . . . . 11 ((((seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) ∈ ℂ ∧ ∃*𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))) ∧ ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))
198187, 197sylan 283 . . . . . . . . . 10 ((𝜑 ∧ ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))
199198ancom2s 566 . . . . . . . . 9 ((𝜑 ∧ ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))) ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))
200199expr 375 . . . . . . . 8 ((𝜑 ∧ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))) → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀)))
201165, 200mpdan 421 . . . . . . 7 (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀)))
20264, 201biimtrrid 153 . . . . . 6 (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))) → 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀)))
20364, 196bitr3id 194 . . . . . . 7 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑖 ∈ (ℤ𝑚)DECID 𝑖𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))))
204165, 203syl5ibrcom 157 . . . . . 6 (𝜑 → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) → (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))))
205202, 204impbid 129 . . . . 5 (𝜑 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀)))
206205adantr 276 . . . 4 ((𝜑 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) ∈ ℂ) → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀)))
207206iota5 5241 . . 3 ((𝜑 ∧ (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀) ∈ ℂ) → (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))
20836, 207mpdan 421 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))
2091, 208eqtrid 2241 1 (𝜑 → ∏𝑘𝐴 𝐵 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 1)))‘𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wex 1506  ∃*wmo 2046  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  csb 3084  wss 3157  ifcif 3562   class class class wbr 4034  cmpt 4095  cio 5218  wf 5255  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5925  Fincfn 6808  cc 7894  0cc0 7896  1c1 7897   · cmul 7901  cle 8079   # cap 8625  cn 9007  0cn0 9266  cz 9343  cuz 9618  ...cfz 10100  seqcseq 10556  chash 10884  cli 11460  cprod 11732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-proddc 11733
This theorem is referenced by:  prod1dc  11768  fprodf1o  11770  fprodmul  11773  prodsnf  11774
  Copyright terms: Public domain W3C validator