| Step | Hyp | Ref
| Expression |
| 1 | | df-proddc 11716 |
. 2
⊢
∏𝑘 ∈
𝐴 𝐵 = (℩𝑦(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
| 2 | | nfcv 2339 |
. . . . 5
⊢
Ⅎ𝑥ℤ |
| 3 | | nfcprod.1 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐴 |
| 4 | | nfcv 2339 |
. . . . . . . 8
⊢
Ⅎ𝑥(ℤ≥‘𝑚) |
| 5 | 3, 4 | nfss 3176 |
. . . . . . 7
⊢
Ⅎ𝑥 𝐴 ⊆
(ℤ≥‘𝑚) |
| 6 | 3 | nfcri 2333 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑗 ∈ 𝐴 |
| 7 | 6 | nfdc 1673 |
. . . . . . . 8
⊢
Ⅎ𝑥DECID 𝑗 ∈ 𝐴 |
| 8 | 4, 7 | nfralxy 2535 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴 |
| 9 | 5, 8 | nfan 1579 |
. . . . . 6
⊢
Ⅎ𝑥(𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
| 10 | | nfv 1542 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑧 # 0 |
| 11 | | nfcv 2339 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝑛 |
| 12 | | nfcv 2339 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥
· |
| 13 | 3 | nfcri 2333 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥 𝑘 ∈ 𝐴 |
| 14 | | nfcprod.2 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥𝐵 |
| 15 | | nfcv 2339 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥1 |
| 16 | 13, 14, 15 | nfif 3589 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥if(𝑘 ∈ 𝐴, 𝐵, 1) |
| 17 | 2, 16 | nfmpt 4125 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) |
| 18 | 11, 12, 17 | nfseq 10549 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) |
| 19 | | nfcv 2339 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥
⇝ |
| 20 | | nfcv 2339 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝑧 |
| 21 | 18, 19, 20 | nfbr 4079 |
. . . . . . . . . 10
⊢
Ⅎ𝑥seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑧 |
| 22 | 10, 21 | nfan 1579 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑧) |
| 23 | 22 | nfex 1651 |
. . . . . . . 8
⊢
Ⅎ𝑥∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑧) |
| 24 | 4, 23 | nfrexw 2536 |
. . . . . . 7
⊢
Ⅎ𝑥∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑧) |
| 25 | | nfcv 2339 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑚 |
| 26 | 25, 12, 17 | nfseq 10549 |
. . . . . . . 8
⊢
Ⅎ𝑥seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) |
| 27 | | nfcv 2339 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑦 |
| 28 | 26, 19, 27 | nfbr 4079 |
. . . . . . 7
⊢
Ⅎ𝑥seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦 |
| 29 | 24, 28 | nfan 1579 |
. . . . . 6
⊢
Ⅎ𝑥(∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) |
| 30 | 9, 29 | nfan 1579 |
. . . . 5
⊢
Ⅎ𝑥((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) |
| 31 | 2, 30 | nfrexw 2536 |
. . . 4
⊢
Ⅎ𝑥∃𝑚 ∈ ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) |
| 32 | | nfcv 2339 |
. . . . 5
⊢
Ⅎ𝑥ℕ |
| 33 | | nfcv 2339 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑓 |
| 34 | | nfcv 2339 |
. . . . . . . 8
⊢
Ⅎ𝑥(1...𝑚) |
| 35 | 33, 34, 3 | nff1o 5502 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑓:(1...𝑚)–1-1-onto→𝐴 |
| 36 | | nfv 1542 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥 𝑛 ≤ 𝑚 |
| 37 | | nfcv 2339 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝑓‘𝑛) |
| 38 | 37, 14 | nfcsb 3122 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥⦋(𝑓‘𝑛) / 𝑘⦌𝐵 |
| 39 | 36, 38, 15 | nfif 3589 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1) |
| 40 | 32, 39 | nfmpt 4125 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)) |
| 41 | 15, 12, 40 | nfseq 10549 |
. . . . . . . . 9
⊢
Ⅎ𝑥seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ≤
𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1))) |
| 42 | 41, 25 | nffv 5568 |
. . . . . . . 8
⊢
Ⅎ𝑥(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) |
| 43 | 42 | nfeq2 2351 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) |
| 44 | 35, 43 | nfan 1579 |
. . . . . 6
⊢
Ⅎ𝑥(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) |
| 45 | 44 | nfex 1651 |
. . . . 5
⊢
Ⅎ𝑥∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) |
| 46 | 32, 45 | nfrexw 2536 |
. . . 4
⊢
Ⅎ𝑥∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) |
| 47 | 31, 46 | nfor 1588 |
. . 3
⊢
Ⅎ𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) |
| 48 | 47 | nfiotaw 5223 |
. 2
⊢
Ⅎ𝑥(℩𝑦(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
| 49 | 1, 48 | nfcxfr 2336 |
1
⊢
Ⅎ𝑥∏𝑘 ∈ 𝐴 𝐵 |