ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcprod GIF version

Theorem nfcprod 11595
Description: Bound-variable hypothesis builder for product: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in 𝑘𝐴𝐵. (Contributed by Scott Fenton, 1-Dec-2017.)
Hypotheses
Ref Expression
nfcprod.1 𝑥𝐴
nfcprod.2 𝑥𝐵
Assertion
Ref Expression
nfcprod 𝑥𝑘𝐴 𝐵
Distinct variable group:   𝑥,𝑘
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)

Proof of Theorem nfcprod
Dummy variables 𝑓 𝑗 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-proddc 11591 . 2 𝑘𝐴 𝐵 = (℩𝑦(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
2 nfcv 2332 . . . . 5 𝑥
3 nfcprod.1 . . . . . . . 8 𝑥𝐴
4 nfcv 2332 . . . . . . . 8 𝑥(ℤ𝑚)
53, 4nfss 3163 . . . . . . 7 𝑥 𝐴 ⊆ (ℤ𝑚)
63nfcri 2326 . . . . . . . . 9 𝑥 𝑗𝐴
76nfdc 1670 . . . . . . . 8 𝑥DECID 𝑗𝐴
84, 7nfralxy 2528 . . . . . . 7 𝑥𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴
95, 8nfan 1576 . . . . . 6 𝑥(𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
10 nfv 1539 . . . . . . . . . 10 𝑥 𝑧 # 0
11 nfcv 2332 . . . . . . . . . . . 12 𝑥𝑛
12 nfcv 2332 . . . . . . . . . . . 12 𝑥 ·
133nfcri 2326 . . . . . . . . . . . . . 14 𝑥 𝑘𝐴
14 nfcprod.2 . . . . . . . . . . . . . 14 𝑥𝐵
15 nfcv 2332 . . . . . . . . . . . . . 14 𝑥1
1613, 14, 15nfif 3577 . . . . . . . . . . . . 13 𝑥if(𝑘𝐴, 𝐵, 1)
172, 16nfmpt 4110 . . . . . . . . . . . 12 𝑥(𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
1811, 12, 17nfseq 10486 . . . . . . . . . . 11 𝑥seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
19 nfcv 2332 . . . . . . . . . . 11 𝑥
20 nfcv 2332 . . . . . . . . . . 11 𝑥𝑧
2118, 19, 20nfbr 4064 . . . . . . . . . 10 𝑥seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧
2210, 21nfan 1576 . . . . . . . . 9 𝑥(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
2322nfex 1648 . . . . . . . 8 𝑥𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
244, 23nfrexxy 2529 . . . . . . 7 𝑥𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
25 nfcv 2332 . . . . . . . . 9 𝑥𝑚
2625, 12, 17nfseq 10486 . . . . . . . 8 𝑥seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
27 nfcv 2332 . . . . . . . 8 𝑥𝑦
2826, 19, 27nfbr 4064 . . . . . . 7 𝑥seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦
2924, 28nfan 1576 . . . . . 6 𝑥(∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
309, 29nfan 1576 . . . . 5 𝑥((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
312, 30nfrexxy 2529 . . . 4 𝑥𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
32 nfcv 2332 . . . . 5 𝑥
33 nfcv 2332 . . . . . . . 8 𝑥𝑓
34 nfcv 2332 . . . . . . . 8 𝑥(1...𝑚)
3533, 34, 3nff1o 5478 . . . . . . 7 𝑥 𝑓:(1...𝑚)–1-1-onto𝐴
36 nfv 1539 . . . . . . . . . . . 12 𝑥 𝑛𝑚
37 nfcv 2332 . . . . . . . . . . . . 13 𝑥(𝑓𝑛)
3837, 14nfcsb 3109 . . . . . . . . . . . 12 𝑥(𝑓𝑛) / 𝑘𝐵
3936, 38, 15nfif 3577 . . . . . . . . . . 11 𝑥if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)
4032, 39nfmpt 4110 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1))
4115, 12, 40nfseq 10486 . . . . . . . . 9 𝑥seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))
4241, 25nffv 5544 . . . . . . . 8 𝑥(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)
4342nfeq2 2344 . . . . . . 7 𝑥 𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)
4435, 43nfan 1576 . . . . . 6 𝑥(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4544nfex 1648 . . . . 5 𝑥𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4632, 45nfrexxy 2529 . . . 4 𝑥𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4731, 46nfor 1585 . . 3 𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))
4847nfiotaw 5200 . 2 𝑥(℩𝑦(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
491, 48nfcxfr 2329 1 𝑥𝑘𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 104  wo 709  DECID wdc 835   = wceq 1364  wex 1503  wcel 2160  wnfc 2319  wral 2468  wrex 2469  csb 3072  wss 3144  ifcif 3549   class class class wbr 4018  cmpt 4079  cio 5194  1-1-ontowf1o 5234  cfv 5235  (class class class)co 5896  0cc0 7841  1c1 7842   · cmul 7846  cle 8023   # cap 8568  cn 8949  cz 9283  cuz 9558  ...cfz 10038  seqcseq 10476  cli 11318  cprod 11590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-recs 6330  df-frec 6416  df-seqfrec 10477  df-proddc 11591
This theorem is referenced by:  fprod2dlemstep  11662  fprodcom2fi  11666
  Copyright terms: Public domain W3C validator