ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcprod GIF version

Theorem nfcprod 11941
Description: Bound-variable hypothesis builder for product: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in 𝑘𝐴𝐵. (Contributed by Scott Fenton, 1-Dec-2017.)
Hypotheses
Ref Expression
nfcprod.1 𝑥𝐴
nfcprod.2 𝑥𝐵
Assertion
Ref Expression
nfcprod 𝑥𝑘𝐴 𝐵
Distinct variable group:   𝑥,𝑘
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)

Proof of Theorem nfcprod
Dummy variables 𝑓 𝑗 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-proddc 11937 . 2 𝑘𝐴 𝐵 = (℩𝑦(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
2 nfcv 2349 . . . . 5 𝑥
3 nfcprod.1 . . . . . . . 8 𝑥𝐴
4 nfcv 2349 . . . . . . . 8 𝑥(ℤ𝑚)
53, 4nfss 3190 . . . . . . 7 𝑥 𝐴 ⊆ (ℤ𝑚)
63nfcri 2343 . . . . . . . . 9 𝑥 𝑗𝐴
76nfdc 1683 . . . . . . . 8 𝑥DECID 𝑗𝐴
84, 7nfralxy 2545 . . . . . . 7 𝑥𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴
95, 8nfan 1589 . . . . . 6 𝑥(𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
10 nfv 1552 . . . . . . . . . 10 𝑥 𝑧 # 0
11 nfcv 2349 . . . . . . . . . . . 12 𝑥𝑛
12 nfcv 2349 . . . . . . . . . . . 12 𝑥 ·
133nfcri 2343 . . . . . . . . . . . . . 14 𝑥 𝑘𝐴
14 nfcprod.2 . . . . . . . . . . . . . 14 𝑥𝐵
15 nfcv 2349 . . . . . . . . . . . . . 14 𝑥1
1613, 14, 15nfif 3604 . . . . . . . . . . . . 13 𝑥if(𝑘𝐴, 𝐵, 1)
172, 16nfmpt 4144 . . . . . . . . . . . 12 𝑥(𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
1811, 12, 17nfseq 10624 . . . . . . . . . . 11 𝑥seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
19 nfcv 2349 . . . . . . . . . . 11 𝑥
20 nfcv 2349 . . . . . . . . . . 11 𝑥𝑧
2118, 19, 20nfbr 4098 . . . . . . . . . 10 𝑥seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧
2210, 21nfan 1589 . . . . . . . . 9 𝑥(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
2322nfex 1661 . . . . . . . 8 𝑥𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
244, 23nfrexw 2546 . . . . . . 7 𝑥𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
25 nfcv 2349 . . . . . . . . 9 𝑥𝑚
2625, 12, 17nfseq 10624 . . . . . . . 8 𝑥seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
27 nfcv 2349 . . . . . . . 8 𝑥𝑦
2826, 19, 27nfbr 4098 . . . . . . 7 𝑥seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦
2924, 28nfan 1589 . . . . . 6 𝑥(∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
309, 29nfan 1589 . . . . 5 𝑥((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
312, 30nfrexw 2546 . . . 4 𝑥𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
32 nfcv 2349 . . . . 5 𝑥
33 nfcv 2349 . . . . . . . 8 𝑥𝑓
34 nfcv 2349 . . . . . . . 8 𝑥(1...𝑚)
3533, 34, 3nff1o 5532 . . . . . . 7 𝑥 𝑓:(1...𝑚)–1-1-onto𝐴
36 nfv 1552 . . . . . . . . . . . 12 𝑥 𝑛𝑚
37 nfcv 2349 . . . . . . . . . . . . 13 𝑥(𝑓𝑛)
3837, 14nfcsb 3135 . . . . . . . . . . . 12 𝑥(𝑓𝑛) / 𝑘𝐵
3936, 38, 15nfif 3604 . . . . . . . . . . 11 𝑥if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)
4032, 39nfmpt 4144 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1))
4115, 12, 40nfseq 10624 . . . . . . . . 9 𝑥seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))
4241, 25nffv 5599 . . . . . . . 8 𝑥(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)
4342nfeq2 2361 . . . . . . 7 𝑥 𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)
4435, 43nfan 1589 . . . . . 6 𝑥(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4544nfex 1661 . . . . 5 𝑥𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4632, 45nfrexw 2546 . . . 4 𝑥𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4731, 46nfor 1598 . . 3 𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))
4847nfiotaw 5245 . 2 𝑥(℩𝑦(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
491, 48nfcxfr 2346 1 𝑥𝑘𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 104  wo 710  DECID wdc 836   = wceq 1373  wex 1516  wcel 2177  wnfc 2336  wral 2485  wrex 2486  csb 3097  wss 3170  ifcif 3575   class class class wbr 4051  cmpt 4113  cio 5239  1-1-ontowf1o 5279  cfv 5280  (class class class)co 5957  0cc0 7945  1c1 7946   · cmul 7950  cle 8128   # cap 8674  cn 9056  cz 9392  cuz 9668  ...cfz 10150  seqcseq 10614  cli 11664  cprod 11936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-recs 6404  df-frec 6490  df-seqfrec 10615  df-proddc 11937
This theorem is referenced by:  fprod2dlemstep  12008  fprodcom2fi  12012
  Copyright terms: Public domain W3C validator