ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcprod GIF version

Theorem nfcprod 11496
Description: Bound-variable hypothesis builder for product: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in 𝑘𝐴𝐵. (Contributed by Scott Fenton, 1-Dec-2017.)
Hypotheses
Ref Expression
nfcprod.1 𝑥𝐴
nfcprod.2 𝑥𝐵
Assertion
Ref Expression
nfcprod 𝑥𝑘𝐴 𝐵
Distinct variable group:   𝑥,𝑘
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)

Proof of Theorem nfcprod
Dummy variables 𝑓 𝑗 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-proddc 11492 . 2 𝑘𝐴 𝐵 = (℩𝑦(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
2 nfcv 2308 . . . . 5 𝑥
3 nfcprod.1 . . . . . . . 8 𝑥𝐴
4 nfcv 2308 . . . . . . . 8 𝑥(ℤ𝑚)
53, 4nfss 3135 . . . . . . 7 𝑥 𝐴 ⊆ (ℤ𝑚)
63nfcri 2302 . . . . . . . . 9 𝑥 𝑗𝐴
76nfdc 1647 . . . . . . . 8 𝑥DECID 𝑗𝐴
84, 7nfralxy 2504 . . . . . . 7 𝑥𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴
95, 8nfan 1553 . . . . . 6 𝑥(𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
10 nfv 1516 . . . . . . . . . 10 𝑥 𝑧 # 0
11 nfcv 2308 . . . . . . . . . . . 12 𝑥𝑛
12 nfcv 2308 . . . . . . . . . . . 12 𝑥 ·
133nfcri 2302 . . . . . . . . . . . . . 14 𝑥 𝑘𝐴
14 nfcprod.2 . . . . . . . . . . . . . 14 𝑥𝐵
15 nfcv 2308 . . . . . . . . . . . . . 14 𝑥1
1613, 14, 15nfif 3548 . . . . . . . . . . . . 13 𝑥if(𝑘𝐴, 𝐵, 1)
172, 16nfmpt 4074 . . . . . . . . . . . 12 𝑥(𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
1811, 12, 17nfseq 10390 . . . . . . . . . . 11 𝑥seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
19 nfcv 2308 . . . . . . . . . . 11 𝑥
20 nfcv 2308 . . . . . . . . . . 11 𝑥𝑧
2118, 19, 20nfbr 4028 . . . . . . . . . 10 𝑥seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧
2210, 21nfan 1553 . . . . . . . . 9 𝑥(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
2322nfex 1625 . . . . . . . 8 𝑥𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
244, 23nfrexxy 2505 . . . . . . 7 𝑥𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
25 nfcv 2308 . . . . . . . . 9 𝑥𝑚
2625, 12, 17nfseq 10390 . . . . . . . 8 𝑥seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
27 nfcv 2308 . . . . . . . 8 𝑥𝑦
2826, 19, 27nfbr 4028 . . . . . . 7 𝑥seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦
2924, 28nfan 1553 . . . . . 6 𝑥(∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
309, 29nfan 1553 . . . . 5 𝑥((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
312, 30nfrexxy 2505 . . . 4 𝑥𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
32 nfcv 2308 . . . . 5 𝑥
33 nfcv 2308 . . . . . . . 8 𝑥𝑓
34 nfcv 2308 . . . . . . . 8 𝑥(1...𝑚)
3533, 34, 3nff1o 5430 . . . . . . 7 𝑥 𝑓:(1...𝑚)–1-1-onto𝐴
36 nfv 1516 . . . . . . . . . . . 12 𝑥 𝑛𝑚
37 nfcv 2308 . . . . . . . . . . . . 13 𝑥(𝑓𝑛)
3837, 14nfcsb 3082 . . . . . . . . . . . 12 𝑥(𝑓𝑛) / 𝑘𝐵
3936, 38, 15nfif 3548 . . . . . . . . . . 11 𝑥if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)
4032, 39nfmpt 4074 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1))
4115, 12, 40nfseq 10390 . . . . . . . . 9 𝑥seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))
4241, 25nffv 5496 . . . . . . . 8 𝑥(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)
4342nfeq2 2320 . . . . . . 7 𝑥 𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)
4435, 43nfan 1553 . . . . . 6 𝑥(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4544nfex 1625 . . . . 5 𝑥𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4632, 45nfrexxy 2505 . . . 4 𝑥𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4731, 46nfor 1562 . . 3 𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))
4847nfiotaw 5157 . 2 𝑥(℩𝑦(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
491, 48nfcxfr 2305 1 𝑥𝑘𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 103  wo 698  DECID wdc 824   = wceq 1343  wex 1480  wcel 2136  wnfc 2295  wral 2444  wrex 2445  csb 3045  wss 3116  ifcif 3520   class class class wbr 3982  cmpt 4043  cio 5151  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  0cc0 7753  1c1 7754   · cmul 7758  cle 7934   # cap 8479  cn 8857  cz 9191  cuz 9466  ...cfz 9944  seqcseq 10380  cli 11219  cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-recs 6273  df-frec 6359  df-seqfrec 10381  df-proddc 11492
This theorem is referenced by:  fprod2dlemstep  11563  fprodcom2fi  11567
  Copyright terms: Public domain W3C validator