ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcprod GIF version

Theorem nfcprod 11808
Description: Bound-variable hypothesis builder for product: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in 𝑘𝐴𝐵. (Contributed by Scott Fenton, 1-Dec-2017.)
Hypotheses
Ref Expression
nfcprod.1 𝑥𝐴
nfcprod.2 𝑥𝐵
Assertion
Ref Expression
nfcprod 𝑥𝑘𝐴 𝐵
Distinct variable group:   𝑥,𝑘
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)

Proof of Theorem nfcprod
Dummy variables 𝑓 𝑗 𝑚 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-proddc 11804 . 2 𝑘𝐴 𝐵 = (℩𝑦(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
2 nfcv 2347 . . . . 5 𝑥
3 nfcprod.1 . . . . . . . 8 𝑥𝐴
4 nfcv 2347 . . . . . . . 8 𝑥(ℤ𝑚)
53, 4nfss 3185 . . . . . . 7 𝑥 𝐴 ⊆ (ℤ𝑚)
63nfcri 2341 . . . . . . . . 9 𝑥 𝑗𝐴
76nfdc 1681 . . . . . . . 8 𝑥DECID 𝑗𝐴
84, 7nfralxy 2543 . . . . . . 7 𝑥𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴
95, 8nfan 1587 . . . . . 6 𝑥(𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
10 nfv 1550 . . . . . . . . . 10 𝑥 𝑧 # 0
11 nfcv 2347 . . . . . . . . . . . 12 𝑥𝑛
12 nfcv 2347 . . . . . . . . . . . 12 𝑥 ·
133nfcri 2341 . . . . . . . . . . . . . 14 𝑥 𝑘𝐴
14 nfcprod.2 . . . . . . . . . . . . . 14 𝑥𝐵
15 nfcv 2347 . . . . . . . . . . . . . 14 𝑥1
1613, 14, 15nfif 3598 . . . . . . . . . . . . 13 𝑥if(𝑘𝐴, 𝐵, 1)
172, 16nfmpt 4135 . . . . . . . . . . . 12 𝑥(𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
1811, 12, 17nfseq 10600 . . . . . . . . . . 11 𝑥seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
19 nfcv 2347 . . . . . . . . . . 11 𝑥
20 nfcv 2347 . . . . . . . . . . 11 𝑥𝑧
2118, 19, 20nfbr 4089 . . . . . . . . . 10 𝑥seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧
2210, 21nfan 1587 . . . . . . . . 9 𝑥(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
2322nfex 1659 . . . . . . . 8 𝑥𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
244, 23nfrexw 2544 . . . . . . 7 𝑥𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧)
25 nfcv 2347 . . . . . . . . 9 𝑥𝑚
2625, 12, 17nfseq 10600 . . . . . . . 8 𝑥seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
27 nfcv 2347 . . . . . . . 8 𝑥𝑦
2826, 19, 27nfbr 4089 . . . . . . 7 𝑥seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦
2924, 28nfan 1587 . . . . . 6 𝑥(∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
309, 29nfan 1587 . . . . 5 𝑥((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
312, 30nfrexw 2544 . . . 4 𝑥𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
32 nfcv 2347 . . . . 5 𝑥
33 nfcv 2347 . . . . . . . 8 𝑥𝑓
34 nfcv 2347 . . . . . . . 8 𝑥(1...𝑚)
3533, 34, 3nff1o 5519 . . . . . . 7 𝑥 𝑓:(1...𝑚)–1-1-onto𝐴
36 nfv 1550 . . . . . . . . . . . 12 𝑥 𝑛𝑚
37 nfcv 2347 . . . . . . . . . . . . 13 𝑥(𝑓𝑛)
3837, 14nfcsb 3130 . . . . . . . . . . . 12 𝑥(𝑓𝑛) / 𝑘𝐵
3936, 38, 15nfif 3598 . . . . . . . . . . 11 𝑥if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)
4032, 39nfmpt 4135 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1))
4115, 12, 40nfseq 10600 . . . . . . . . 9 𝑥seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))
4241, 25nffv 5585 . . . . . . . 8 𝑥(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)
4342nfeq2 2359 . . . . . . 7 𝑥 𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)
4435, 43nfan 1587 . . . . . 6 𝑥(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4544nfex 1659 . . . . 5 𝑥𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4632, 45nfrexw 2544 . . . 4 𝑥𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4731, 46nfor 1596 . . 3 𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))
4847nfiotaw 5235 . 2 𝑥(℩𝑦(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑧(𝑧 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑧) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
491, 48nfcxfr 2344 1 𝑥𝑘𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 104  wo 709  DECID wdc 835   = wceq 1372  wex 1514  wcel 2175  wnfc 2334  wral 2483  wrex 2484  csb 3092  wss 3165  ifcif 3570   class class class wbr 4043  cmpt 4104  cio 5229  1-1-ontowf1o 5269  cfv 5270  (class class class)co 5943  0cc0 7924  1c1 7925   · cmul 7929  cle 8107   # cap 8653  cn 9035  cz 9371  cuz 9647  ...cfz 10129  seqcseq 10590  cli 11531  cprod 11803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-recs 6390  df-frec 6476  df-seqfrec 10591  df-proddc 11804
This theorem is referenced by:  fprod2dlemstep  11875  fprodcom2fi  11879
  Copyright terms: Public domain W3C validator