ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcprod1 GIF version

Theorem nfcprod1 11594
Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
nfcprod1.1 𝑘𝐴
Assertion
Ref Expression
nfcprod1 𝑘𝑘𝐴 𝐵
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem nfcprod1
Dummy variables 𝑓 𝑗 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-proddc 11591 . 2 𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
2 nfcv 2332 . . . . 5 𝑘
3 nfcprod1.1 . . . . . . . 8 𝑘𝐴
4 nfcv 2332 . . . . . . . 8 𝑘(ℤ𝑚)
53, 4nfss 3163 . . . . . . 7 𝑘 𝐴 ⊆ (ℤ𝑚)
63nfcri 2326 . . . . . . . . 9 𝑘 𝑗𝐴
76nfdc 1670 . . . . . . . 8 𝑘DECID 𝑗𝐴
84, 7nfralxy 2528 . . . . . . 7 𝑘𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴
95, 8nfan 1576 . . . . . 6 𝑘(𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
10 nfv 1539 . . . . . . . . . 10 𝑘 𝑦 # 0
11 nfcv 2332 . . . . . . . . . . . 12 𝑘𝑛
12 nfcv 2332 . . . . . . . . . . . 12 𝑘 ·
13 nfmpt1 4111 . . . . . . . . . . . 12 𝑘(𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
1411, 12, 13nfseq 10486 . . . . . . . . . . 11 𝑘seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
15 nfcv 2332 . . . . . . . . . . 11 𝑘
16 nfcv 2332 . . . . . . . . . . 11 𝑘𝑦
1714, 15, 16nfbr 4064 . . . . . . . . . 10 𝑘seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦
1810, 17nfan 1576 . . . . . . . . 9 𝑘(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
1918nfex 1648 . . . . . . . 8 𝑘𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
204, 19nfrexxy 2529 . . . . . . 7 𝑘𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
21 nfcv 2332 . . . . . . . . 9 𝑘𝑚
2221, 12, 13nfseq 10486 . . . . . . . 8 𝑘seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
23 nfcv 2332 . . . . . . . 8 𝑘𝑥
2422, 15, 23nfbr 4064 . . . . . . 7 𝑘seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥
2520, 24nfan 1576 . . . . . 6 𝑘(∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)
269, 25nfan 1576 . . . . 5 𝑘((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
272, 26nfrexxy 2529 . . . 4 𝑘𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
28 nfcv 2332 . . . . 5 𝑘
29 nfcv 2332 . . . . . . . 8 𝑘𝑓
30 nfcv 2332 . . . . . . . 8 𝑘(1...𝑚)
3129, 30, 3nff1o 5478 . . . . . . 7 𝑘 𝑓:(1...𝑚)–1-1-onto𝐴
32 nfcv 2332 . . . . . . . . . 10 𝑘1
33 nfv 1539 . . . . . . . . . . . 12 𝑘 𝑛𝑚
34 nfcsb1v 3105 . . . . . . . . . . . 12 𝑘(𝑓𝑛) / 𝑘𝐵
3533, 34, 32nfif 3577 . . . . . . . . . . 11 𝑘if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)
3628, 35nfmpt 4110 . . . . . . . . . 10 𝑘(𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1))
3732, 12, 36nfseq 10486 . . . . . . . . 9 𝑘seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))
3837, 21nffv 5544 . . . . . . . 8 𝑘(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)
3938nfeq2 2344 . . . . . . 7 𝑘 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)
4031, 39nfan 1576 . . . . . 6 𝑘(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4140nfex 1648 . . . . 5 𝑘𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4228, 41nfrexxy 2529 . . . 4 𝑘𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4327, 42nfor 1585 . . 3 𝑘(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))
4443nfiotaw 5200 . 2 𝑘(℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
451, 44nfcxfr 2329 1 𝑘𝑘𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 104  wo 709  DECID wdc 835   = wceq 1364  wex 1503  wcel 2160  wnfc 2319  wral 2468  wrex 2469  csb 3072  wss 3144  ifcif 3549   class class class wbr 4018  cmpt 4079  cio 5194  1-1-ontowf1o 5234  cfv 5235  (class class class)co 5896  0cc0 7841  1c1 7842   · cmul 7846  cle 8023   # cap 8568  cn 8949  cz 9283  cuz 9558  ...cfz 10038  seqcseq 10476  cli 11318  cprod 11590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-recs 6330  df-frec 6416  df-seqfrec 10477  df-proddc 11591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator