ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcprod1 GIF version

Theorem nfcprod1 12060
Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
nfcprod1.1 𝑘𝐴
Assertion
Ref Expression
nfcprod1 𝑘𝑘𝐴 𝐵
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem nfcprod1
Dummy variables 𝑓 𝑗 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-proddc 12057 . 2 𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
2 nfcv 2372 . . . . 5 𝑘
3 nfcprod1.1 . . . . . . . 8 𝑘𝐴
4 nfcv 2372 . . . . . . . 8 𝑘(ℤ𝑚)
53, 4nfss 3217 . . . . . . 7 𝑘 𝐴 ⊆ (ℤ𝑚)
63nfcri 2366 . . . . . . . . 9 𝑘 𝑗𝐴
76nfdc 1705 . . . . . . . 8 𝑘DECID 𝑗𝐴
84, 7nfralxy 2568 . . . . . . 7 𝑘𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴
95, 8nfan 1611 . . . . . 6 𝑘(𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴)
10 nfv 1574 . . . . . . . . . 10 𝑘 𝑦 # 0
11 nfcv 2372 . . . . . . . . . . . 12 𝑘𝑛
12 nfcv 2372 . . . . . . . . . . . 12 𝑘 ·
13 nfmpt1 4176 . . . . . . . . . . . 12 𝑘(𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
1411, 12, 13nfseq 10674 . . . . . . . . . . 11 𝑘seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
15 nfcv 2372 . . . . . . . . . . 11 𝑘
16 nfcv 2372 . . . . . . . . . . 11 𝑘𝑦
1714, 15, 16nfbr 4129 . . . . . . . . . 10 𝑘seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦
1810, 17nfan 1611 . . . . . . . . 9 𝑘(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
1918nfex 1683 . . . . . . . 8 𝑘𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
204, 19nfrexw 2569 . . . . . . 7 𝑘𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)
21 nfcv 2372 . . . . . . . . 9 𝑘𝑚
2221, 12, 13nfseq 10674 . . . . . . . 8 𝑘seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)))
23 nfcv 2372 . . . . . . . 8 𝑘𝑥
2422, 15, 23nfbr 4129 . . . . . . 7 𝑘seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥
2520, 24nfan 1611 . . . . . 6 𝑘(∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)
269, 25nfan 1611 . . . . 5 𝑘((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
272, 26nfrexw 2569 . . . 4 𝑘𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
28 nfcv 2372 . . . . 5 𝑘
29 nfcv 2372 . . . . . . . 8 𝑘𝑓
30 nfcv 2372 . . . . . . . 8 𝑘(1...𝑚)
3129, 30, 3nff1o 5569 . . . . . . 7 𝑘 𝑓:(1...𝑚)–1-1-onto𝐴
32 nfcv 2372 . . . . . . . . . 10 𝑘1
33 nfv 1574 . . . . . . . . . . . 12 𝑘 𝑛𝑚
34 nfcsb1v 3157 . . . . . . . . . . . 12 𝑘(𝑓𝑛) / 𝑘𝐵
3533, 34, 32nfif 3631 . . . . . . . . . . 11 𝑘if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)
3628, 35nfmpt 4175 . . . . . . . . . 10 𝑘(𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1))
3732, 12, 36nfseq 10674 . . . . . . . . 9 𝑘seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))
3837, 21nffv 5636 . . . . . . . 8 𝑘(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)
3938nfeq2 2384 . . . . . . 7 𝑘 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)
4031, 39nfan 1611 . . . . . 6 𝑘(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4140nfex 1683 . . . . 5 𝑘𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4228, 41nfrexw 2569 . . . 4 𝑘𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))
4327, 42nfor 1620 . . 3 𝑘(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚)))
4443nfiotaw 5281 . 2 𝑘(℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴) ∧ (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 1)))‘𝑚))))
451, 44nfcxfr 2369 1 𝑘𝑘𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 104  wo 713  DECID wdc 839   = wceq 1395  wex 1538  wcel 2200  wnfc 2359  wral 2508  wrex 2509  csb 3124  wss 3197  ifcif 3602   class class class wbr 4082  cmpt 4144  cio 5275  1-1-ontowf1o 5316  cfv 5317  (class class class)co 6000  0cc0 7995  1c1 7996   · cmul 8000  cle 8178   # cap 8724  cn 9106  cz 9442  cuz 9718  ...cfz 10200  seqcseq 10664  cli 11784  cprod 12056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-seqfrec 10665  df-proddc 12057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator