| Step | Hyp | Ref
 | Expression | 
| 1 |   | cbvprod.2 | 
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝐴 | 
| 2 | 1 | nfcri 2333 | 
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘 𝑗 ∈ 𝐴 | 
| 3 |   | cbvprod.4 | 
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘𝐵 | 
| 4 |   | nfcv 2339 | 
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘1 | 
| 5 | 2, 3, 4 | nfif 3589 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘if(𝑗 ∈ 𝐴, 𝐵, 1) | 
| 6 |   | cbvprod.3 | 
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗𝐴 | 
| 7 | 6 | nfcri 2333 | 
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗 𝑘 ∈ 𝐴 | 
| 8 |   | cbvprod.5 | 
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗𝐶 | 
| 9 |   | nfcv 2339 | 
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗1 | 
| 10 | 7, 8, 9 | nfif 3589 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗if(𝑘 ∈ 𝐴, 𝐶, 1) | 
| 11 |   | eleq1w 2257 | 
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | 
| 12 |   | cbvprod.1 | 
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | 
| 13 | 11, 12 | ifbieq1d 3583 | 
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → if(𝑗 ∈ 𝐴, 𝐵, 1) = if(𝑘 ∈ 𝐴, 𝐶, 1)) | 
| 14 | 5, 10, 13 | cbvmpt 4128 | 
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)) | 
| 15 |   | seqeq3 10544 | 
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)) → seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)))) | 
| 16 | 14, 15 | ax-mp 5 | 
. . . . . . . . . . 11
⊢ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) | 
| 17 | 16 | breq1i 4040 | 
. . . . . . . . . 10
⊢ (seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) | 
| 18 | 17 | anbi2i 457 | 
. . . . . . . . 9
⊢ ((𝑦 # 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦)) | 
| 19 | 18 | exbii 1619 | 
. . . . . . . 8
⊢
(∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦)) | 
| 20 | 19 | rexbii 2504 | 
. . . . . . 7
⊢
(∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦)) | 
| 21 |   | seqeq3 10544 | 
. . . . . . . . 9
⊢ ((𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)) → seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)))) | 
| 22 | 14, 21 | ax-mp 5 | 
. . . . . . . 8
⊢ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) | 
| 23 | 22 | breq1i 4040 | 
. . . . . . 7
⊢ (seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥) | 
| 24 | 20, 23 | anbi12i 460 | 
. . . . . 6
⊢
((∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥)) | 
| 25 | 24 | anbi2i 457 | 
. . . . 5
⊢ (((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑠 ∈ (ℤ≥‘𝑚)DECID 𝑠 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑠 ∈
(ℤ≥‘𝑚)DECID 𝑠 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥))) | 
| 26 | 25 | rexbii 2504 | 
. . . 4
⊢
(∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑠 ∈ (ℤ≥‘𝑚)DECID 𝑠 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑠 ∈
(ℤ≥‘𝑚)DECID 𝑠 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥))) | 
| 27 | 3, 8, 12 | cbvcsbw 3088 | 
. . . . . . . . . . . 12
⊢
⦋(𝑓‘𝑛) / 𝑗⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶 | 
| 28 |   | ifeq1 3564 | 
. . . . . . . . . . . 12
⊢
(⦋(𝑓‘𝑛) / 𝑗⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶 → if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 1) = if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)) | 
| 29 | 27, 28 | ax-mp 5 | 
. . . . . . . . . . 11
⊢ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 1) = if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1) | 
| 30 | 29 | mpteq2i 4120 | 
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)) | 
| 31 |   | seqeq3 10544 | 
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))) | 
| 32 | 30, 31 | ax-mp 5 | 
. . . . . . . . 9
⊢ seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ≤
𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1))) | 
| 33 | 32 | fveq1i 5559 | 
. . . . . . . 8
⊢ (seq1(
· , (𝑛 ∈
ℕ ↦ if(𝑛 ≤
𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 1)))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))‘𝑚) | 
| 34 | 33 | eqeq2i 2207 | 
. . . . . . 7
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 1)))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))‘𝑚)) | 
| 35 | 34 | anbi2i 457 | 
. . . . . 6
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 1)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))‘𝑚))) | 
| 36 | 35 | exbii 1619 | 
. . . . 5
⊢
(∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 1)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))‘𝑚))) | 
| 37 | 36 | rexbii 2504 | 
. . . 4
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 1)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))‘𝑚))) | 
| 38 | 26, 37 | orbi12i 765 | 
. . 3
⊢
((∃𝑚 ∈
ℤ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑠 ∈ (ℤ≥‘𝑚)DECID 𝑠 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 1)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑠 ∈
(ℤ≥‘𝑚)DECID 𝑠 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))‘𝑚)))) | 
| 39 | 38 | iotabii 5242 | 
. 2
⊢
(℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑠 ∈
(ℤ≥‘𝑚)DECID 𝑠 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 1)))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑠 ∈
(ℤ≥‘𝑚)DECID 𝑠 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))‘𝑚)))) | 
| 40 |   | df-proddc 11716 | 
. 2
⊢
∏𝑗 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑠 ∈
(ℤ≥‘𝑚)DECID 𝑠 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑗 ∈ ℤ ↦ if(𝑗 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 1)))‘𝑚)))) | 
| 41 |   | df-proddc 11716 | 
. 2
⊢
∏𝑘 ∈
𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑠 ∈
(ℤ≥‘𝑚)DECID 𝑠 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))‘𝑚)))) | 
| 42 | 39, 40, 41 | 3eqtr4i 2227 | 
1
⊢
∏𝑗 ∈
𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |