| Step | Hyp | Ref
| Expression |
| 1 | | nfra1 2528 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘∀𝑘 ∈ 𝐴 𝐵 = 𝐶 |
| 2 | | nfv 1542 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘 𝑚 ∈ ℤ |
| 3 | 1, 2 | nfan 1579 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(∀𝑘 ∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) |
| 4 | | nfv 1542 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑗 ∈ (ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
| 5 | 3, 4 | nfan 1579 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘((∀𝑘 ∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) |
| 6 | | nfv 1542 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘 𝑛 ∈
(ℤ≥‘𝑚) |
| 7 | 5, 6 | nfan 1579 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘(((∀𝑘 ∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) |
| 8 | | simp-4l 541 |
. . . . . . . . . . . . . . . 16
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 ∈ 𝐴) → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
| 9 | | simpr 110 |
. . . . . . . . . . . . . . . 16
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) |
| 10 | | rsp 2544 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑘 ∈
𝐴 𝐵 = 𝐶 → (𝑘 ∈ 𝐴 → 𝐵 = 𝐶)) |
| 11 | 8, 9, 10 | sylc 62 |
. . . . . . . . . . . . . . 15
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) |
| 12 | 11 | adantllr 481 |
. . . . . . . . . . . . . 14
⊢
((((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ 𝑘 ∈ ℤ) ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) |
| 13 | | simpllr 534 |
. . . . . . . . . . . . . . . 16
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑘 ∈ ℤ) → 𝑚 ∈ ℤ) |
| 14 | | simplrl 535 |
. . . . . . . . . . . . . . . 16
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑘 ∈ ℤ) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
| 15 | | simplrr 536 |
. . . . . . . . . . . . . . . 16
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑘 ∈ ℤ) → ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) |
| 16 | | simpr 110 |
. . . . . . . . . . . . . . . 16
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ) |
| 17 | 13, 14, 15, 16 | sumdc 11523 |
. . . . . . . . . . . . . . 15
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑘 ∈ ℤ) → DECID
𝑘 ∈ 𝐴) |
| 18 | 17 | adantlr 477 |
. . . . . . . . . . . . . 14
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ 𝑘 ∈ ℤ) → DECID
𝑘 ∈ 𝐴) |
| 19 | 12, 18 | ifeq1dadc 3591 |
. . . . . . . . . . . . 13
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ 𝑘 ∈ ℤ) → if(𝑘 ∈ 𝐴, 𝐵, 1) = if(𝑘 ∈ 𝐴, 𝐶, 1)) |
| 20 | 7, 19 | mpteq2da 4122 |
. . . . . . . . . . . 12
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) |
| 21 | 20 | seqeq3d 10547 |
. . . . . . . . . . 11
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)))) |
| 22 | 21 | breq1d 4043 |
. . . . . . . . . 10
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → (seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦)) |
| 23 | 22 | anbi2d 464 |
. . . . . . . . 9
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → ((𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦))) |
| 24 | 23 | exbidv 1839 |
. . . . . . . 8
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → (∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦))) |
| 25 | 24 | rexbidva 2494 |
. . . . . . 7
⊢
(((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) → (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦))) |
| 26 | 11, 17 | ifeq1dadc 3591 |
. . . . . . . . . 10
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) ∧ 𝑘 ∈ ℤ) → if(𝑘 ∈ 𝐴, 𝐵, 1) = if(𝑘 ∈ 𝐴, 𝐶, 1)) |
| 27 | 5, 26 | mpteq2da 4122 |
. . . . . . . . 9
⊢
(((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) → (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) |
| 28 | 27 | seqeq3d 10547 |
. . . . . . . 8
⊢
(((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) → seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1)))) |
| 29 | 28 | breq1d 4043 |
. . . . . . 7
⊢
(((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥)) |
| 30 | 25, 29 | anbi12d 473 |
. . . . . 6
⊢
(((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴)) → ((∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥))) |
| 31 | 30 | pm5.32da 452 |
. . . . 5
⊢
((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℤ) → (((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥)))) |
| 32 | 31 | rexbidva 2494 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 𝐵 = 𝐶 → (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ↔ ∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥)))) |
| 33 | | f1of 5504 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(1...𝑚)–1-1-onto→𝐴 → 𝑓:(1...𝑚)⟶𝐴) |
| 34 | 33 | ad3antlr 493 |
. . . . . . . . . . . . . 14
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑓:(1...𝑚)⟶𝐴) |
| 35 | | simplr 528 |
. . . . . . . . . . . . . . 15
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑛 ∈ ℕ) |
| 36 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑛 ≤ 𝑚) |
| 37 | | simp-4r 542 |
. . . . . . . . . . . . . . . . 17
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑚 ∈ ℕ) |
| 38 | 37 | nnzd 9447 |
. . . . . . . . . . . . . . . 16
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑚 ∈ ℤ) |
| 39 | | fznn 10164 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℤ → (𝑛 ∈ (1...𝑚) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝑚))) |
| 40 | 38, 39 | syl 14 |
. . . . . . . . . . . . . . 15
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → (𝑛 ∈ (1...𝑚) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝑚))) |
| 41 | 35, 36, 40 | mpbir2and 946 |
. . . . . . . . . . . . . 14
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → 𝑛 ∈ (1...𝑚)) |
| 42 | 34, 41 | ffvelcdmd 5698 |
. . . . . . . . . . . . 13
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → (𝑓‘𝑛) ∈ 𝐴) |
| 43 | | simp-4l 541 |
. . . . . . . . . . . . 13
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
| 44 | | nfcsb1v 3117 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋(𝑓‘𝑛) / 𝑘⦌𝐵 |
| 45 | | nfcsb1v 3117 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘⦋(𝑓‘𝑛) / 𝑘⦌𝐶 |
| 46 | 44, 45 | nfeq 2347 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶 |
| 47 | | csbeq1a 3093 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑓‘𝑛) → 𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) |
| 48 | | csbeq1a 3093 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑓‘𝑛) → 𝐶 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶) |
| 49 | 47, 48 | eqeq12d 2211 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑓‘𝑛) → (𝐵 = 𝐶 ↔ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)) |
| 50 | 46, 49 | rspc 2862 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑛) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 = 𝐶 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶)) |
| 51 | 42, 43, 50 | sylc 62 |
. . . . . . . . . . . 12
⊢
(((((∀𝑘
∈ 𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ≤ 𝑚) → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶) |
| 52 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 53 | 52 | nnzd 9447 |
. . . . . . . . . . . . 13
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
| 54 | | simpllr 534 |
. . . . . . . . . . . . . 14
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℕ) |
| 55 | 54 | nnzd 9447 |
. . . . . . . . . . . . 13
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → 𝑚 ∈ ℤ) |
| 56 | | zdcle 9402 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) →
DECID 𝑛 ≤
𝑚) |
| 57 | 53, 55, 56 | syl2anc 411 |
. . . . . . . . . . . 12
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → DECID
𝑛 ≤ 𝑚) |
| 58 | 51, 57 | ifeq1dadc 3591 |
. . . . . . . . . . 11
⊢
((((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑛 ∈ ℕ) → if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1) = if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)) |
| 59 | 58 | mpteq2dva 4123 |
. . . . . . . . . 10
⊢
(((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1))) |
| 60 | 59 | seqeq3d 10547 |
. . . . . . . . 9
⊢
(((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))) |
| 61 | 60 | fveq1d 5560 |
. . . . . . . 8
⊢
(((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (seq1( · ,
(𝑛 ∈ ℕ ↦
if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))‘𝑚)) |
| 62 | 61 | eqeq2d 2208 |
. . . . . . 7
⊢
(((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))‘𝑚))) |
| 63 | 62 | pm5.32da 452 |
. . . . . 6
⊢
((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))‘𝑚)))) |
| 64 | 63 | exbidv 1839 |
. . . . 5
⊢
((∀𝑘 ∈
𝐴 𝐵 = 𝐶 ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))‘𝑚)))) |
| 65 | 64 | rexbidva 2494 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 𝐵 = 𝐶 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))‘𝑚)))) |
| 66 | 32, 65 | orbi12d 794 |
. . 3
⊢
(∀𝑘 ∈
𝐴 𝐵 = 𝐶 → ((∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))‘𝑚))))) |
| 67 | 66 | iotabidv 5241 |
. 2
⊢
(∀𝑘 ∈
𝐴 𝐵 = 𝐶 → (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))‘𝑚))))) |
| 68 | | df-proddc 11716 |
. 2
⊢
∏𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 1)))‘𝑚)))) |
| 69 | | df-proddc 11716 |
. 2
⊢
∏𝑘 ∈
𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑗 ∈
(ℤ≥‘𝑚)DECID 𝑗 ∈ 𝐴) ∧ (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 # 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐶, 1))) ⇝ 𝑥)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 1)))‘𝑚)))) |
| 70 | 67, 68, 69 | 3eqtr4g 2254 |
1
⊢
(∀𝑘 ∈
𝐴 𝐵 = 𝐶 → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶) |