ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sup GIF version

Definition df-sup 6626
Description: Define the supremum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the supremum exists. (Contributed by NM, 22-May-1999.)
Assertion
Ref Expression
df-sup sup(𝐴, 𝐵, 𝑅) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧

Detailed syntax breakdown of Definition df-sup
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cR . . 3 class 𝑅
41, 2, 3csup 6624 . 2 class sup(𝐴, 𝐵, 𝑅)
5 vx . . . . . . . . 9 setvar 𝑥
65cv 1286 . . . . . . . 8 class 𝑥
7 vy . . . . . . . . 9 setvar 𝑦
87cv 1286 . . . . . . . 8 class 𝑦
96, 8, 3wbr 3822 . . . . . . 7 wff 𝑥𝑅𝑦
109wn 3 . . . . . 6 wff ¬ 𝑥𝑅𝑦
1110, 7, 1wral 2355 . . . . 5 wff 𝑦𝐴 ¬ 𝑥𝑅𝑦
128, 6, 3wbr 3822 . . . . . . 7 wff 𝑦𝑅𝑥
13 vz . . . . . . . . . 10 setvar 𝑧
1413cv 1286 . . . . . . . . 9 class 𝑧
158, 14, 3wbr 3822 . . . . . . . 8 wff 𝑦𝑅𝑧
1615, 13, 1wrex 2356 . . . . . . 7 wff 𝑧𝐴 𝑦𝑅𝑧
1712, 16wi 4 . . . . . 6 wff (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)
1817, 7, 2wral 2355 . . . . 5 wff 𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)
1911, 18wa 102 . . . 4 wff (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))
2019, 5, 2crab 2359 . . 3 class {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
2120cuni 3638 . 2 class {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
224, 21wceq 1287 1 wff sup(𝐴, 𝐵, 𝑅) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
Colors of variables: wff set class
This definition is referenced by:  supeq1  6628  supeq2  6631  supeq3  6632  supeq123d  6633  nfsup  6634  supval2ti  6637  sup00  6645  dfinfre  8355
  Copyright terms: Public domain W3C validator