Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supeq2 | GIF version |
Description: Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
supeq2 | ⊢ (𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 2722 | . . . 4 ⊢ (𝐵 = 𝐶 → {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))} = {𝑥 ∈ 𝐶 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))}) | |
2 | raleq 2665 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧) ↔ ∀𝑦 ∈ 𝐶 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))) | |
3 | 2 | anbi2d 461 | . . . . 5 ⊢ (𝐵 = 𝐶 → ((∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐶 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧)))) |
4 | 3 | rabbidv 2719 | . . . 4 ⊢ (𝐵 = 𝐶 → {𝑥 ∈ 𝐶 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))} = {𝑥 ∈ 𝐶 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐶 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))}) |
5 | 1, 4 | eqtrd 2203 | . . 3 ⊢ (𝐵 = 𝐶 → {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))} = {𝑥 ∈ 𝐶 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐶 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))}) |
6 | 5 | unieqd 3807 | . 2 ⊢ (𝐵 = 𝐶 → ∪ {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))} = ∪ {𝑥 ∈ 𝐶 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐶 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))}) |
7 | df-sup 6961 | . 2 ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))} | |
8 | df-sup 6961 | . 2 ⊢ sup(𝐴, 𝐶, 𝑅) = ∪ {𝑥 ∈ 𝐶 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐶 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))} | |
9 | 6, 7, 8 | 3eqtr4g 2228 | 1 ⊢ (𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1348 ∀wral 2448 ∃wrex 2449 {crab 2452 ∪ cuni 3796 class class class wbr 3989 supcsup 6959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-uni 3797 df-sup 6961 |
This theorem is referenced by: infeq2 6991 |
Copyright terms: Public domain | W3C validator |