ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq2 GIF version

Theorem supeq2 6966
Description: Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
supeq2 (𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅))

Proof of Theorem supeq2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabeq 2722 . . . 4 (𝐵 = 𝐶 → {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))})
2 raleq 2665 . . . . . 6 (𝐵 = 𝐶 → (∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧) ↔ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)))
32anbi2d 461 . . . . 5 (𝐵 = 𝐶 → ((∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))))
43rabbidv 2719 . . . 4 (𝐵 = 𝐶 → {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))})
51, 4eqtrd 2203 . . 3 (𝐵 = 𝐶 → {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))})
65unieqd 3807 . 2 (𝐵 = 𝐶 {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))})
7 df-sup 6961 . 2 sup(𝐴, 𝐵, 𝑅) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
8 df-sup 6961 . 2 sup(𝐴, 𝐶, 𝑅) = {𝑥𝐶 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐶 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
96, 7, 83eqtr4g 2228 1 (𝐵 = 𝐶 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐶, 𝑅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1348  wral 2448  wrex 2449  {crab 2452   cuni 3796   class class class wbr 3989  supcsup 6959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-uni 3797  df-sup 6961
This theorem is referenced by:  infeq2  6991
  Copyright terms: Public domain W3C validator