| Step | Hyp | Ref
 | Expression | 
| 1 |   | breq 4035 | 
. . . . . . 7
⊢ (𝑅 = 𝑆 → (𝑥𝑅𝑦 ↔ 𝑥𝑆𝑦)) | 
| 2 | 1 | notbid 668 | 
. . . . . 6
⊢ (𝑅 = 𝑆 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑆𝑦)) | 
| 3 | 2 | ralbidv 2497 | 
. . . . 5
⊢ (𝑅 = 𝑆 → (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑆𝑦)) | 
| 4 |   | breq 4035 | 
. . . . . . 7
⊢ (𝑅 = 𝑆 → (𝑦𝑅𝑥 ↔ 𝑦𝑆𝑥)) | 
| 5 |   | breq 4035 | 
. . . . . . . 8
⊢ (𝑅 = 𝑆 → (𝑦𝑅𝑧 ↔ 𝑦𝑆𝑧)) | 
| 6 | 5 | rexbidv 2498 | 
. . . . . . 7
⊢ (𝑅 = 𝑆 → (∃𝑧 ∈ 𝐴 𝑦𝑅𝑧 ↔ ∃𝑧 ∈ 𝐴 𝑦𝑆𝑧)) | 
| 7 | 4, 6 | imbi12d 234 | 
. . . . . 6
⊢ (𝑅 = 𝑆 → ((𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧) ↔ (𝑦𝑆𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑆𝑧))) | 
| 8 | 7 | ralbidv 2497 | 
. . . . 5
⊢ (𝑅 = 𝑆 → (∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧) ↔ ∀𝑦 ∈ 𝐵 (𝑦𝑆𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑆𝑧))) | 
| 9 | 3, 8 | anbi12d 473 | 
. . . 4
⊢ (𝑅 = 𝑆 → ((∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑆𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑆𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑆𝑧)))) | 
| 10 | 9 | rabbidv 2752 | 
. . 3
⊢ (𝑅 = 𝑆 → {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))} = {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑆𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑆𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑆𝑧))}) | 
| 11 | 10 | unieqd 3850 | 
. 2
⊢ (𝑅 = 𝑆 → ∪ {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))} = ∪ {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑆𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑆𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑆𝑧))}) | 
| 12 |   | df-sup 7050 | 
. 2
⊢ sup(𝐴, 𝐵, 𝑅) = ∪ {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))} | 
| 13 |   | df-sup 7050 | 
. 2
⊢ sup(𝐴, 𝐵, 𝑆) = ∪ {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑆𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑆𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑆𝑧))} | 
| 14 | 11, 12, 13 | 3eqtr4g 2254 | 
1
⊢ (𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆)) |