ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq3 GIF version

Theorem supeq3 7118
Description: Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
supeq3 (𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆))

Proof of Theorem supeq3
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 4061 . . . . . . 7 (𝑅 = 𝑆 → (𝑥𝑅𝑦𝑥𝑆𝑦))
21notbid 669 . . . . . 6 (𝑅 = 𝑆 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑥𝑆𝑦))
32ralbidv 2508 . . . . 5 (𝑅 = 𝑆 → (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥𝑆𝑦))
4 breq 4061 . . . . . . 7 (𝑅 = 𝑆 → (𝑦𝑅𝑥𝑦𝑆𝑥))
5 breq 4061 . . . . . . . 8 (𝑅 = 𝑆 → (𝑦𝑅𝑧𝑦𝑆𝑧))
65rexbidv 2509 . . . . . . 7 (𝑅 = 𝑆 → (∃𝑧𝐴 𝑦𝑅𝑧 ↔ ∃𝑧𝐴 𝑦𝑆𝑧))
74, 6imbi12d 234 . . . . . 6 (𝑅 = 𝑆 → ((𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧) ↔ (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧)))
87ralbidv 2508 . . . . 5 (𝑅 = 𝑆 → (∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧) ↔ ∀𝑦𝐵 (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧)))
93, 8anbi12d 473 . . . 4 (𝑅 = 𝑆 → ((∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥𝑆𝑦 ∧ ∀𝑦𝐵 (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧))))
109rabbidv 2765 . . 3 (𝑅 = 𝑆 → {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑆𝑦 ∧ ∀𝑦𝐵 (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧))})
1110unieqd 3875 . 2 (𝑅 = 𝑆 {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))} = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑆𝑦 ∧ ∀𝑦𝐵 (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧))})
12 df-sup 7112 . 2 sup(𝐴, 𝐵, 𝑅) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
13 df-sup 7112 . 2 sup(𝐴, 𝐵, 𝑆) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑆𝑦 ∧ ∀𝑦𝐵 (𝑦𝑆𝑥 → ∃𝑧𝐴 𝑦𝑆𝑧))}
1411, 12, 133eqtr4g 2265 1 (𝑅 = 𝑆 → sup(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑆))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wral 2486  wrex 2487  {crab 2490   cuni 3864   class class class wbr 4059  supcsup 7110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-uni 3865  df-br 4060  df-sup 7112
This theorem is referenced by:  infeq3  7143
  Copyright terms: Public domain W3C validator