![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sup00 | GIF version |
Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
sup00 | ⊢ sup(𝐵, ∅, 𝑅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sup 7043 | . 2 ⊢ sup(𝐵, ∅, 𝑅) = ∪ {𝑥 ∈ ∅ ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} | |
2 | rab0 3475 | . . 3 ⊢ {𝑥 ∈ ∅ ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = ∅ | |
3 | 2 | unieqi 3845 | . 2 ⊢ ∪ {𝑥 ∈ ∅ ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} = ∪ ∅ |
4 | uni0 3862 | . 2 ⊢ ∪ ∅ = ∅ | |
5 | 1, 3, 4 | 3eqtri 2218 | 1 ⊢ sup(𝐵, ∅, 𝑅) = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∀wral 2472 ∃wrex 2473 {crab 2476 ∅c0 3446 ∪ cuni 3835 class class class wbr 4029 supcsup 7041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 df-sn 3624 df-uni 3836 df-sup 7043 |
This theorem is referenced by: inf00 7090 |
Copyright terms: Public domain | W3C validator |