ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sup00 GIF version

Theorem sup00 6890
Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
sup00 sup(𝐵, ∅, 𝑅) = ∅

Proof of Theorem sup00
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 6871 . 2 sup(𝐵, ∅, 𝑅) = {𝑥 ∈ ∅ ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))}
2 rab0 3391 . . 3 {𝑥 ∈ ∅ ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} = ∅
32unieqi 3746 . 2 {𝑥 ∈ ∅ ∣ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ ∅ (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))} =
4 uni0 3763 . 2 ∅ = ∅
51, 3, 43eqtri 2164 1 sup(𝐵, ∅, 𝑅) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1331  wral 2416  wrex 2417  {crab 2420  c0 3363   cuni 3736   class class class wbr 3929  supcsup 6869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-in 3077  df-ss 3084  df-nul 3364  df-sn 3533  df-uni 3737  df-sup 6871
This theorem is referenced by:  inf00  6918
  Copyright terms: Public domain W3C validator