Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfinfre GIF version

Theorem dfinfre 8739
 Description: The infimum of a set of reals 𝐴. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
dfinfre (𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dfinfre
StepHypRef Expression
1 df-inf 6880 . 2 inf(𝐴, ℝ, < ) = sup(𝐴, ℝ, < )
2 df-sup 6879 . . 3 sup(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))}
3 ssel2 3097 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
4 vex 2692 . . . . . . . . . . . . 13 𝑥 ∈ V
5 vex 2692 . . . . . . . . . . . . 13 𝑦 ∈ V
64, 5brcnv 4730 . . . . . . . . . . . 12 (𝑥 < 𝑦𝑦 < 𝑥)
76notbii 658 . . . . . . . . . . 11 𝑥 < 𝑦 ↔ ¬ 𝑦 < 𝑥)
8 lenlt 7865 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
97, 8bitr4id 198 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (¬ 𝑥 < 𝑦𝑥𝑦))
103, 9sylan2 284 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑦𝐴)) → (¬ 𝑥 < 𝑦𝑥𝑦))
1110ancoms 266 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 < 𝑦𝑥𝑦))
1211an32s 558 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (¬ 𝑥 < 𝑦𝑥𝑦))
1312ralbidva 2434 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 𝑥𝑦))
145, 4brcnv 4730 . . . . . . . . 9 (𝑦 < 𝑥𝑥 < 𝑦)
15 vex 2692 . . . . . . . . . . 11 𝑧 ∈ V
165, 15brcnv 4730 . . . . . . . . . 10 (𝑦 < 𝑧𝑧 < 𝑦)
1716rexbii 2445 . . . . . . . . 9 (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑧𝐴 𝑧 < 𝑦)
1814, 17imbi12i 238 . . . . . . . 8 ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
1918ralbii 2444 . . . . . . 7 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
2019a1i 9 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2113, 20anbi12d 465 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
2221rabbidva 2677 . . . 4 (𝐴 ⊆ ℝ → {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))} = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
2322unieqd 3755 . . 3 (𝐴 ⊆ ℝ → {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))} = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
242, 23syl5eq 2185 . 2 (𝐴 ⊆ ℝ → sup(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
251, 24syl5eq 2185 1 (𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481  ∀wral 2417  ∃wrex 2418  {crab 2421   ⊆ wss 3076  ∪ cuni 3744   class class class wbr 3937  ◡ccnv 4546  supcsup 6877  infcinf 6878  ℝcr 7644   < clt 7825   ≤ cle 7826 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-xp 4553  df-cnv 4555  df-sup 6879  df-inf 6880  df-xr 7829  df-le 7831 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator