Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq123d GIF version

Theorem supeq123d 6830
 Description: Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
supeq123d.a (𝜑𝐴 = 𝐷)
supeq123d.b (𝜑𝐵 = 𝐸)
supeq123d.c (𝜑𝐶 = 𝐹)
Assertion
Ref Expression
supeq123d (𝜑 → sup(𝐴, 𝐵, 𝐶) = sup(𝐷, 𝐸, 𝐹))

Proof of Theorem supeq123d
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supeq123d.b . . . 4 (𝜑𝐵 = 𝐸)
2 supeq123d.a . . . . . 6 (𝜑𝐴 = 𝐷)
3 supeq123d.c . . . . . . . 8 (𝜑𝐶 = 𝐹)
43breqd 3906 . . . . . . 7 (𝜑 → (𝑥𝐶𝑦𝑥𝐹𝑦))
54notbid 639 . . . . . 6 (𝜑 → (¬ 𝑥𝐶𝑦 ↔ ¬ 𝑥𝐹𝑦))
62, 5raleqbidv 2612 . . . . 5 (𝜑 → (∀𝑦𝐴 ¬ 𝑥𝐶𝑦 ↔ ∀𝑦𝐷 ¬ 𝑥𝐹𝑦))
73breqd 3906 . . . . . . 7 (𝜑 → (𝑦𝐶𝑥𝑦𝐹𝑥))
83breqd 3906 . . . . . . . 8 (𝜑 → (𝑦𝐶𝑧𝑦𝐹𝑧))
92, 8rexeqbidv 2613 . . . . . . 7 (𝜑 → (∃𝑧𝐴 𝑦𝐶𝑧 ↔ ∃𝑧𝐷 𝑦𝐹𝑧))
107, 9imbi12d 233 . . . . . 6 (𝜑 → ((𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧) ↔ (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧)))
111, 10raleqbidv 2612 . . . . 5 (𝜑 → (∀𝑦𝐵 (𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧) ↔ ∀𝑦𝐸 (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧)))
126, 11anbi12d 462 . . . 4 (𝜑 → ((∀𝑦𝐴 ¬ 𝑥𝐶𝑦 ∧ ∀𝑦𝐵 (𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧)) ↔ (∀𝑦𝐷 ¬ 𝑥𝐹𝑦 ∧ ∀𝑦𝐸 (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧))))
131, 12rabeqbidv 2652 . . 3 (𝜑 → {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝐶𝑦 ∧ ∀𝑦𝐵 (𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧))} = {𝑥𝐸 ∣ (∀𝑦𝐷 ¬ 𝑥𝐹𝑦 ∧ ∀𝑦𝐸 (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧))})
1413unieqd 3713 . 2 (𝜑 {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝐶𝑦 ∧ ∀𝑦𝐵 (𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧))} = {𝑥𝐸 ∣ (∀𝑦𝐷 ¬ 𝑥𝐹𝑦 ∧ ∀𝑦𝐸 (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧))})
15 df-sup 6823 . 2 sup(𝐴, 𝐵, 𝐶) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝐶𝑦 ∧ ∀𝑦𝐵 (𝑦𝐶𝑥 → ∃𝑧𝐴 𝑦𝐶𝑧))}
16 df-sup 6823 . 2 sup(𝐷, 𝐸, 𝐹) = {𝑥𝐸 ∣ (∀𝑦𝐷 ¬ 𝑥𝐹𝑦 ∧ ∀𝑦𝐸 (𝑦𝐹𝑥 → ∃𝑧𝐷 𝑦𝐹𝑧))}
1714, 15, 163eqtr4g 2172 1 (𝜑 → sup(𝐴, 𝐵, 𝐶) = sup(𝐷, 𝐸, 𝐹))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   = wceq 1314  ∀wral 2390  ∃wrex 2391  {crab 2394  ∪ cuni 3702   class class class wbr 3895  supcsup 6821 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-rab 2399  df-uni 3703  df-br 3896  df-sup 6823 This theorem is referenced by:  infeq123d  6855
 Copyright terms: Public domain W3C validator