ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsup GIF version

Theorem nfsup 6872
Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
nfsup.1 𝑥𝐴
nfsup.2 𝑥𝐵
nfsup.3 𝑥𝑅
Assertion
Ref Expression
nfsup 𝑥sup(𝐴, 𝐵, 𝑅)

Proof of Theorem nfsup
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 6864 . 2 sup(𝐴, 𝐵, 𝑅) = {𝑢𝐵 ∣ (∀𝑣𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣𝐵 (𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤))}
2 nfsup.1 . . . . . 6 𝑥𝐴
3 nfcv 2279 . . . . . . . 8 𝑥𝑢
4 nfsup.3 . . . . . . . 8 𝑥𝑅
5 nfcv 2279 . . . . . . . 8 𝑥𝑣
63, 4, 5nfbr 3969 . . . . . . 7 𝑥 𝑢𝑅𝑣
76nfn 1636 . . . . . 6 𝑥 ¬ 𝑢𝑅𝑣
82, 7nfralya 2471 . . . . 5 𝑥𝑣𝐴 ¬ 𝑢𝑅𝑣
9 nfsup.2 . . . . . 6 𝑥𝐵
105, 4, 3nfbr 3969 . . . . . . 7 𝑥 𝑣𝑅𝑢
11 nfcv 2279 . . . . . . . . 9 𝑥𝑤
125, 4, 11nfbr 3969 . . . . . . . 8 𝑥 𝑣𝑅𝑤
132, 12nfrexya 2472 . . . . . . 7 𝑥𝑤𝐴 𝑣𝑅𝑤
1410, 13nfim 1551 . . . . . 6 𝑥(𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤)
159, 14nfralya 2471 . . . . 5 𝑥𝑣𝐵 (𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤)
168, 15nfan 1544 . . . 4 𝑥(∀𝑣𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣𝐵 (𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤))
1716, 9nfrabxy 2609 . . 3 𝑥{𝑢𝐵 ∣ (∀𝑣𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣𝐵 (𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤))}
1817nfuni 3737 . 2 𝑥 {𝑢𝐵 ∣ (∀𝑣𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣𝐵 (𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤))}
191, 18nfcxfr 2276 1 𝑥sup(𝐴, 𝐵, 𝑅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wnfc 2266  wral 2414  wrex 2415  {crab 2418   cuni 3731   class class class wbr 3924  supcsup 6862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-un 3070  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-sup 6864
This theorem is referenced by:  nfinf  6897  infssuzcldc  11633
  Copyright terms: Public domain W3C validator