ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsup GIF version

Theorem nfsup 7058
Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
nfsup.1 𝑥𝐴
nfsup.2 𝑥𝐵
nfsup.3 𝑥𝑅
Assertion
Ref Expression
nfsup 𝑥sup(𝐴, 𝐵, 𝑅)

Proof of Theorem nfsup
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 7050 . 2 sup(𝐴, 𝐵, 𝑅) = {𝑢𝐵 ∣ (∀𝑣𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣𝐵 (𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤))}
2 nfsup.1 . . . . . 6 𝑥𝐴
3 nfcv 2339 . . . . . . . 8 𝑥𝑢
4 nfsup.3 . . . . . . . 8 𝑥𝑅
5 nfcv 2339 . . . . . . . 8 𝑥𝑣
63, 4, 5nfbr 4079 . . . . . . 7 𝑥 𝑢𝑅𝑣
76nfn 1672 . . . . . 6 𝑥 ¬ 𝑢𝑅𝑣
82, 7nfralya 2537 . . . . 5 𝑥𝑣𝐴 ¬ 𝑢𝑅𝑣
9 nfsup.2 . . . . . 6 𝑥𝐵
105, 4, 3nfbr 4079 . . . . . . 7 𝑥 𝑣𝑅𝑢
11 nfcv 2339 . . . . . . . . 9 𝑥𝑤
125, 4, 11nfbr 4079 . . . . . . . 8 𝑥 𝑣𝑅𝑤
132, 12nfrexya 2538 . . . . . . 7 𝑥𝑤𝐴 𝑣𝑅𝑤
1410, 13nfim 1586 . . . . . 6 𝑥(𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤)
159, 14nfralya 2537 . . . . 5 𝑥𝑣𝐵 (𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤)
168, 15nfan 1579 . . . 4 𝑥(∀𝑣𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣𝐵 (𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤))
1716, 9nfrabw 2678 . . 3 𝑥{𝑢𝐵 ∣ (∀𝑣𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣𝐵 (𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤))}
1817nfuni 3845 . 2 𝑥 {𝑢𝐵 ∣ (∀𝑣𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣𝐵 (𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤))}
191, 18nfcxfr 2336 1 𝑥sup(𝐴, 𝐵, 𝑅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wnfc 2326  wral 2475  wrex 2476  {crab 2479   cuni 3839   class class class wbr 4033  supcsup 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-sup 7050
This theorem is referenced by:  nfinf  7083  infssuzcldc  10325
  Copyright terms: Public domain W3C validator