| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfsup | GIF version | ||
| Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.) | 
| Ref | Expression | 
|---|---|
| nfsup.1 | ⊢ Ⅎ𝑥𝐴 | 
| nfsup.2 | ⊢ Ⅎ𝑥𝐵 | 
| nfsup.3 | ⊢ Ⅎ𝑥𝑅 | 
| Ref | Expression | 
|---|---|
| nfsup | ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-sup 7050 | . 2 ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ {𝑢 ∈ 𝐵 ∣ (∀𝑣 ∈ 𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣 ∈ 𝐵 (𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤))} | |
| 2 | nfsup.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2339 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑢 | |
| 4 | nfsup.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑅 | |
| 5 | nfcv 2339 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑣 | |
| 6 | 3, 4, 5 | nfbr 4079 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑢𝑅𝑣 | 
| 7 | 6 | nfn 1672 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝑢𝑅𝑣 | 
| 8 | 2, 7 | nfralya 2537 | . . . . 5 ⊢ Ⅎ𝑥∀𝑣 ∈ 𝐴 ¬ 𝑢𝑅𝑣 | 
| 9 | nfsup.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 10 | 5, 4, 3 | nfbr 4079 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑣𝑅𝑢 | 
| 11 | nfcv 2339 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑤 | |
| 12 | 5, 4, 11 | nfbr 4079 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑣𝑅𝑤 | 
| 13 | 2, 12 | nfrexya 2538 | . . . . . . 7 ⊢ Ⅎ𝑥∃𝑤 ∈ 𝐴 𝑣𝑅𝑤 | 
| 14 | 10, 13 | nfim 1586 | . . . . . 6 ⊢ Ⅎ𝑥(𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤) | 
| 15 | 9, 14 | nfralya 2537 | . . . . 5 ⊢ Ⅎ𝑥∀𝑣 ∈ 𝐵 (𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤) | 
| 16 | 8, 15 | nfan 1579 | . . . 4 ⊢ Ⅎ𝑥(∀𝑣 ∈ 𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣 ∈ 𝐵 (𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤)) | 
| 17 | 16, 9 | nfrabw 2678 | . . 3 ⊢ Ⅎ𝑥{𝑢 ∈ 𝐵 ∣ (∀𝑣 ∈ 𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣 ∈ 𝐵 (𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤))} | 
| 18 | 17 | nfuni 3845 | . 2 ⊢ Ⅎ𝑥∪ {𝑢 ∈ 𝐵 ∣ (∀𝑣 ∈ 𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣 ∈ 𝐵 (𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤))} | 
| 19 | 1, 18 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 Ⅎwnfc 2326 ∀wral 2475 ∃wrex 2476 {crab 2479 ∪ cuni 3839 class class class wbr 4033 supcsup 7048 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-sup 7050 | 
| This theorem is referenced by: nfinf 7083 infssuzcldc 10325 | 
| Copyright terms: Public domain | W3C validator |