![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsup | GIF version |
Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.) |
Ref | Expression |
---|---|
nfsup.1 | ⊢ Ⅎ𝑥𝐴 |
nfsup.2 | ⊢ Ⅎ𝑥𝐵 |
nfsup.3 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfsup | ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sup 6985 | . 2 ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ {𝑢 ∈ 𝐵 ∣ (∀𝑣 ∈ 𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣 ∈ 𝐵 (𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤))} | |
2 | nfsup.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2319 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑢 | |
4 | nfsup.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑅 | |
5 | nfcv 2319 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑣 | |
6 | 3, 4, 5 | nfbr 4051 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑢𝑅𝑣 |
7 | 6 | nfn 1658 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝑢𝑅𝑣 |
8 | 2, 7 | nfralya 2517 | . . . . 5 ⊢ Ⅎ𝑥∀𝑣 ∈ 𝐴 ¬ 𝑢𝑅𝑣 |
9 | nfsup.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
10 | 5, 4, 3 | nfbr 4051 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑣𝑅𝑢 |
11 | nfcv 2319 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑤 | |
12 | 5, 4, 11 | nfbr 4051 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑣𝑅𝑤 |
13 | 2, 12 | nfrexya 2518 | . . . . . . 7 ⊢ Ⅎ𝑥∃𝑤 ∈ 𝐴 𝑣𝑅𝑤 |
14 | 10, 13 | nfim 1572 | . . . . . 6 ⊢ Ⅎ𝑥(𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤) |
15 | 9, 14 | nfralya 2517 | . . . . 5 ⊢ Ⅎ𝑥∀𝑣 ∈ 𝐵 (𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤) |
16 | 8, 15 | nfan 1565 | . . . 4 ⊢ Ⅎ𝑥(∀𝑣 ∈ 𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣 ∈ 𝐵 (𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤)) |
17 | 16, 9 | nfrabxy 2658 | . . 3 ⊢ Ⅎ𝑥{𝑢 ∈ 𝐵 ∣ (∀𝑣 ∈ 𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣 ∈ 𝐵 (𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤))} |
18 | 17 | nfuni 3817 | . 2 ⊢ Ⅎ𝑥∪ {𝑢 ∈ 𝐵 ∣ (∀𝑣 ∈ 𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣 ∈ 𝐵 (𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤))} |
19 | 1, 18 | nfcxfr 2316 | 1 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 Ⅎwnfc 2306 ∀wral 2455 ∃wrex 2456 {crab 2459 ∪ cuni 3811 class class class wbr 4005 supcsup 6983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-sup 6985 |
This theorem is referenced by: nfinf 7018 infssuzcldc 11954 |
Copyright terms: Public domain | W3C validator |