ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsup GIF version

Theorem nfsup 7147
Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
Hypotheses
Ref Expression
nfsup.1 𝑥𝐴
nfsup.2 𝑥𝐵
nfsup.3 𝑥𝑅
Assertion
Ref Expression
nfsup 𝑥sup(𝐴, 𝐵, 𝑅)

Proof of Theorem nfsup
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sup 7139 . 2 sup(𝐴, 𝐵, 𝑅) = {𝑢𝐵 ∣ (∀𝑣𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣𝐵 (𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤))}
2 nfsup.1 . . . . . 6 𝑥𝐴
3 nfcv 2372 . . . . . . . 8 𝑥𝑢
4 nfsup.3 . . . . . . . 8 𝑥𝑅
5 nfcv 2372 . . . . . . . 8 𝑥𝑣
63, 4, 5nfbr 4129 . . . . . . 7 𝑥 𝑢𝑅𝑣
76nfn 1704 . . . . . 6 𝑥 ¬ 𝑢𝑅𝑣
82, 7nfralya 2570 . . . . 5 𝑥𝑣𝐴 ¬ 𝑢𝑅𝑣
9 nfsup.2 . . . . . 6 𝑥𝐵
105, 4, 3nfbr 4129 . . . . . . 7 𝑥 𝑣𝑅𝑢
11 nfcv 2372 . . . . . . . . 9 𝑥𝑤
125, 4, 11nfbr 4129 . . . . . . . 8 𝑥 𝑣𝑅𝑤
132, 12nfrexya 2571 . . . . . . 7 𝑥𝑤𝐴 𝑣𝑅𝑤
1410, 13nfim 1618 . . . . . 6 𝑥(𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤)
159, 14nfralya 2570 . . . . 5 𝑥𝑣𝐵 (𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤)
168, 15nfan 1611 . . . 4 𝑥(∀𝑣𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣𝐵 (𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤))
1716, 9nfrabw 2712 . . 3 𝑥{𝑢𝐵 ∣ (∀𝑣𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣𝐵 (𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤))}
1817nfuni 3893 . 2 𝑥 {𝑢𝐵 ∣ (∀𝑣𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣𝐵 (𝑣𝑅𝑢 → ∃𝑤𝐴 𝑣𝑅𝑤))}
191, 18nfcxfr 2369 1 𝑥sup(𝐴, 𝐵, 𝑅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wnfc 2359  wral 2508  wrex 2509  {crab 2512   cuni 3887   class class class wbr 4082  supcsup 7137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-sup 7139
This theorem is referenced by:  nfinf  7172  infssuzcldc  10442
  Copyright terms: Public domain W3C validator