![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsup | GIF version |
Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.) |
Ref | Expression |
---|---|
nfsup.1 | ⊢ Ⅎ𝑥𝐴 |
nfsup.2 | ⊢ Ⅎ𝑥𝐵 |
nfsup.3 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfsup | ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sup 6786 | . 2 ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ {𝑢 ∈ 𝐵 ∣ (∀𝑣 ∈ 𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣 ∈ 𝐵 (𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤))} | |
2 | nfsup.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2240 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑢 | |
4 | nfsup.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑅 | |
5 | nfcv 2240 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑣 | |
6 | 3, 4, 5 | nfbr 3919 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑢𝑅𝑣 |
7 | 6 | nfn 1604 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝑢𝑅𝑣 |
8 | 2, 7 | nfralya 2432 | . . . . 5 ⊢ Ⅎ𝑥∀𝑣 ∈ 𝐴 ¬ 𝑢𝑅𝑣 |
9 | nfsup.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
10 | 5, 4, 3 | nfbr 3919 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑣𝑅𝑢 |
11 | nfcv 2240 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑤 | |
12 | 5, 4, 11 | nfbr 3919 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑣𝑅𝑤 |
13 | 2, 12 | nfrexya 2433 | . . . . . . 7 ⊢ Ⅎ𝑥∃𝑤 ∈ 𝐴 𝑣𝑅𝑤 |
14 | 10, 13 | nfim 1519 | . . . . . 6 ⊢ Ⅎ𝑥(𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤) |
15 | 9, 14 | nfralya 2432 | . . . . 5 ⊢ Ⅎ𝑥∀𝑣 ∈ 𝐵 (𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤) |
16 | 8, 15 | nfan 1512 | . . . 4 ⊢ Ⅎ𝑥(∀𝑣 ∈ 𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣 ∈ 𝐵 (𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤)) |
17 | 16, 9 | nfrabxy 2569 | . . 3 ⊢ Ⅎ𝑥{𝑢 ∈ 𝐵 ∣ (∀𝑣 ∈ 𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣 ∈ 𝐵 (𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤))} |
18 | 17 | nfuni 3689 | . 2 ⊢ Ⅎ𝑥∪ {𝑢 ∈ 𝐵 ∣ (∀𝑣 ∈ 𝐴 ¬ 𝑢𝑅𝑣 ∧ ∀𝑣 ∈ 𝐵 (𝑣𝑅𝑢 → ∃𝑤 ∈ 𝐴 𝑣𝑅𝑤))} |
19 | 1, 18 | nfcxfr 2237 | 1 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 Ⅎwnfc 2227 ∀wral 2375 ∃wrex 2376 {crab 2379 ∪ cuni 3683 class class class wbr 3875 supcsup 6784 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-un 3025 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-sup 6786 |
This theorem is referenced by: nfinf 6819 infssuzcldc 11439 |
Copyright terms: Public domain | W3C validator |