![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-inf | GIF version |
Description: Define the infimum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the infimum exists. For example, 𝑅 could be 'less than', 𝐵 could be the set of real numbers, and 𝐴 could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
df-inf | ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cR | . . 3 class 𝑅 | |
4 | 1, 2, 3 | cinf 6785 | . 2 class inf(𝐴, 𝐵, 𝑅) |
5 | 3 | ccnv 4476 | . . 3 class ◡𝑅 |
6 | 1, 2, 5 | csup 6784 | . 2 class sup(𝐴, 𝐵, ◡𝑅) |
7 | 4, 6 | wceq 1299 | 1 wff inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) |
Colors of variables: wff set class |
This definition is referenced by: infeq1 6813 infeq2 6816 infeq3 6817 infeq123d 6818 nfinf 6819 eqinfti 6822 infvalti 6824 infclti 6825 inflbti 6826 infglbti 6827 infsnti 6832 inf00 6833 infisoti 6834 dfinfre 8572 infrenegsupex 9239 infxrnegsupex 10871 |
Copyright terms: Public domain | W3C validator |