ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-inf GIF version

Definition df-inf 7060
Description: Define the infimum of class 𝐴. It is meaningful when 𝑅 is a relation that strictly orders 𝐵 and when the infimum exists. For example, 𝑅 could be 'less than', 𝐵 could be the set of real numbers, and 𝐴 could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
df-inf inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)

Detailed syntax breakdown of Definition df-inf
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cR . . 3 class 𝑅
41, 2, 3cinf 7058 . 2 class inf(𝐴, 𝐵, 𝑅)
53ccnv 4663 . . 3 class 𝑅
61, 2, 5csup 7057 . 2 class sup(𝐴, 𝐵, 𝑅)
74, 6wceq 1364 1 wff inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
Colors of variables: wff set class
This definition is referenced by:  infeq1  7086  infeq2  7089  infeq3  7090  infeq123d  7091  nfinf  7092  eqinfti  7095  infvalti  7097  infclti  7098  inflbti  7099  infglbti  7100  infsnti  7105  inf00  7106  infisoti  7107  infex2g  7109  dfinfre  9000  infrenegsupex  9685  infxrnegsupex  11445
  Copyright terms: Public domain W3C validator