Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supex2g | GIF version |
Description: Existence of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
supex2g | ⊢ (𝐴 ∈ 𝐶 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sup 6961 | . 2 ⊢ sup(𝐵, 𝐴, 𝑅) = ∪ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} | |
2 | rabexg 4132 | . . 3 ⊢ (𝐴 ∈ 𝐶 → {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} ∈ V) | |
3 | 2 | uniexd 4425 | . 2 ⊢ (𝐴 ∈ 𝐶 → ∪ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} ∈ V) |
4 | 1, 3 | eqeltrid 2257 | 1 ⊢ (𝐴 ∈ 𝐶 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 {crab 2452 Vcvv 2730 ∪ cuni 3796 class class class wbr 3989 supcsup 6959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-rab 2457 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 df-sup 6961 |
This theorem is referenced by: infex2g 7011 pczpre 12251 |
Copyright terms: Public domain | W3C validator |