| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supex2g | GIF version | ||
| Description: Existence of supremum. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| supex2g | ⊢ (𝐴 ∈ 𝐶 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sup 7139 | . 2 ⊢ sup(𝐵, 𝐴, 𝑅) = ∪ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} | |
| 2 | rabexg 4226 | . . 3 ⊢ (𝐴 ∈ 𝐶 → {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} ∈ V) | |
| 3 | 2 | uniexd 4528 | . 2 ⊢ (𝐴 ∈ 𝐶 → ∪ {𝑥 ∈ 𝐴 ∣ (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))} ∈ V) |
| 4 | 1, 3 | eqeltrid 2316 | 1 ⊢ (𝐴 ∈ 𝐶 → sup(𝐵, 𝐴, 𝑅) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 {crab 2512 Vcvv 2799 ∪ cuni 3887 class class class wbr 4082 supcsup 7137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-rab 2517 df-v 2801 df-in 3203 df-ss 3210 df-uni 3888 df-sup 7139 |
| This theorem is referenced by: infex2g 7189 pczpre 12806 |
| Copyright terms: Public domain | W3C validator |