| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ee4anv | GIF version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| ee4anv | ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom 1678 | . . 3 ⊢ (∃𝑦∃𝑧∃𝑤(𝜑 ∧ 𝜓) ↔ ∃𝑧∃𝑦∃𝑤(𝜑 ∧ 𝜓)) | |
| 2 | 1 | exbii 1619 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤(𝜑 ∧ 𝜓) ↔ ∃𝑥∃𝑧∃𝑦∃𝑤(𝜑 ∧ 𝜓)) |
| 3 | eeanv 1951 | . . 3 ⊢ (∃𝑦∃𝑤(𝜑 ∧ 𝜓) ↔ (∃𝑦𝜑 ∧ ∃𝑤𝜓)) | |
| 4 | 3 | 2exbii 1620 | . 2 ⊢ (∃𝑥∃𝑧∃𝑦∃𝑤(𝜑 ∧ 𝜓) ↔ ∃𝑥∃𝑧(∃𝑦𝜑 ∧ ∃𝑤𝜓)) |
| 5 | eeanv 1951 | . 2 ⊢ (∃𝑥∃𝑧(∃𝑦𝜑 ∧ ∃𝑤𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤𝜓)) | |
| 6 | 2, 4, 5 | 3bitri 206 | 1 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤(𝜑 ∧ 𝜓) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: ee8anv 1954 cgsex4g 2800 th3qlem1 6705 dmaddpq 7463 dmmulpq 7464 ltdcnq 7481 enq0ref 7517 nqpnq0nq 7537 nqnq0a 7538 nqnq0m 7539 genpdisj 7607 axaddcl 7948 axmulcl 7950 |
| Copyright terms: Public domain | W3C validator |