ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  netap GIF version

Theorem netap 7373
Description: Negated equality on a set with decidable equality is a tight apartness. (Contributed by Jim Kingdon, 5-Feb-2025.)
Assertion
Ref Expression
netap (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} TAp 𝐴)
Distinct variable groups:   𝑢,𝐴,𝑣   𝑥,𝐴,𝑦

Proof of Theorem netap
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opabssxp 4753 . . 3 {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} ⊆ (𝐴 × 𝐴)
21a1i 9 . 2 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} ⊆ (𝐴 × 𝐴))
3 neirr 2386 . . . . . 6 ¬ 𝑎𝑎
4 df-br 4048 . . . . . . 7 (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑎 ↔ ⟨𝑎, 𝑎⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)})
5 neeq1 2390 . . . . . . . . 9 (𝑢 = 𝑎 → (𝑢𝑣𝑎𝑣))
6 neeq2 2391 . . . . . . . . 9 (𝑣 = 𝑎 → (𝑎𝑣𝑎𝑎))
75, 6opelopab2 4321 . . . . . . . 8 ((𝑎𝐴𝑎𝐴) → (⟨𝑎, 𝑎⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} ↔ 𝑎𝑎))
87anidms 397 . . . . . . 7 (𝑎𝐴 → (⟨𝑎, 𝑎⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} ↔ 𝑎𝑎))
94, 8bitrid 192 . . . . . 6 (𝑎𝐴 → (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑎𝑎𝑎))
103, 9mtbiri 677 . . . . 5 (𝑎𝐴 → ¬ 𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑎)
1110rgen 2560 . . . 4 𝑎𝐴 ¬ 𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑎
1211a1i 9 . . 3 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → ∀𝑎𝐴 ¬ 𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑎)
13 df-br 4048 . . . . . . . 8 (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)})
14 neeq2 2391 . . . . . . . . 9 (𝑣 = 𝑏 → (𝑎𝑣𝑎𝑏))
155, 14opelopab2 4321 . . . . . . . 8 ((𝑎𝐴𝑏𝐴) → (⟨𝑎, 𝑏⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} ↔ 𝑎𝑏))
1613, 15bitrid 192 . . . . . . 7 ((𝑎𝐴𝑏𝐴) → (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏𝑎𝑏))
17 df-br 4048 . . . . . . . 8 (𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑎 ↔ ⟨𝑏, 𝑎⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)})
18 neeq1 2390 . . . . . . . . . . 11 (𝑢 = 𝑏 → (𝑢𝑣𝑏𝑣))
19 neeq2 2391 . . . . . . . . . . 11 (𝑣 = 𝑎 → (𝑏𝑣𝑏𝑎))
2018, 19opelopab2 4321 . . . . . . . . . 10 ((𝑏𝐴𝑎𝐴) → (⟨𝑏, 𝑎⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} ↔ 𝑏𝑎))
2120ancoms 268 . . . . . . . . 9 ((𝑎𝐴𝑏𝐴) → (⟨𝑏, 𝑎⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} ↔ 𝑏𝑎))
22 necom 2461 . . . . . . . . 9 (𝑏𝑎𝑎𝑏)
2321, 22bitrdi 196 . . . . . . . 8 ((𝑎𝐴𝑏𝐴) → (⟨𝑏, 𝑎⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} ↔ 𝑎𝑏))
2417, 23bitrid 192 . . . . . . 7 ((𝑎𝐴𝑏𝐴) → (𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑎𝑎𝑏))
2516, 24bitr4d 191 . . . . . 6 ((𝑎𝐴𝑏𝐴) → (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑎))
2625biimpd 144 . . . . 5 ((𝑎𝐴𝑏𝐴) → (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑎))
2726rgen2 2593 . . . 4 𝑎𝐴𝑏𝐴 (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑎)
2827a1i 9 . . 3 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → ∀𝑎𝐴𝑏𝐴 (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑎))
2912, 28jca 306 . 2 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → (∀𝑎𝐴 ¬ 𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑎 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑎)))
30163adant3 1020 . . . . . 6 ((𝑎𝐴𝑏𝐴𝑐𝐴) → (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏𝑎𝑏))
3130adantl 277 . . . . 5 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏𝑎𝑏))
32 simpr 110 . . . . . . . . . . 11 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) ∧ 𝑎 = 𝑐) → 𝑎 = 𝑐)
33 simplr 528 . . . . . . . . . . 11 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) ∧ 𝑎 = 𝑐) → 𝑎𝑏)
3432, 33eqnetrrd 2403 . . . . . . . . . 10 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) ∧ 𝑎 = 𝑐) → 𝑐𝑏)
3534necomd 2463 . . . . . . . . 9 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) ∧ 𝑎 = 𝑐) → 𝑏𝑐)
3635olcd 736 . . . . . . . 8 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) ∧ 𝑎 = 𝑐) → (𝑎𝑐𝑏𝑐))
37 simpr 110 . . . . . . . . . 10 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) ∧ ¬ 𝑎 = 𝑐) → ¬ 𝑎 = 𝑐)
3837neqned 2384 . . . . . . . . 9 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) ∧ ¬ 𝑎 = 𝑐) → 𝑎𝑐)
3938orcd 735 . . . . . . . 8 ((((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) ∧ ¬ 𝑎 = 𝑐) → (𝑎𝑐𝑏𝑐))
40 equequ2 1737 . . . . . . . . . . 11 (𝑦 = 𝑐 → (𝑎 = 𝑦𝑎 = 𝑐))
4140dcbid 840 . . . . . . . . . 10 (𝑦 = 𝑐 → (DECID 𝑎 = 𝑦DECID 𝑎 = 𝑐))
42 equequ1 1736 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝑥 = 𝑦𝑎 = 𝑦))
4342dcbid 840 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (DECID 𝑥 = 𝑦DECID 𝑎 = 𝑦))
4443ralbidv 2507 . . . . . . . . . . 11 (𝑥 = 𝑎 → (∀𝑦𝐴 DECID 𝑥 = 𝑦 ↔ ∀𝑦𝐴 DECID 𝑎 = 𝑦))
45 simpll 527 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
46 simplr1 1042 . . . . . . . . . . 11 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) → 𝑎𝐴)
4744, 45, 46rspcdva 2883 . . . . . . . . . 10 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) → ∀𝑦𝐴 DECID 𝑎 = 𝑦)
48 simplr3 1044 . . . . . . . . . 10 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) → 𝑐𝐴)
4941, 47, 48rspcdva 2883 . . . . . . . . 9 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) → DECID 𝑎 = 𝑐)
50 exmiddc 838 . . . . . . . . 9 (DECID 𝑎 = 𝑐 → (𝑎 = 𝑐 ∨ ¬ 𝑎 = 𝑐))
5149, 50syl 14 . . . . . . . 8 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) → (𝑎 = 𝑐 ∨ ¬ 𝑎 = 𝑐))
5236, 39, 51mpjaodan 800 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) → (𝑎𝑐𝑏𝑐))
53 df-br 4048 . . . . . . . . . 10 (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐 ↔ ⟨𝑎, 𝑐⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)})
54 neeq2 2391 . . . . . . . . . . . 12 (𝑣 = 𝑐 → (𝑎𝑣𝑎𝑐))
555, 54opelopab2 4321 . . . . . . . . . . 11 ((𝑎𝐴𝑐𝐴) → (⟨𝑎, 𝑐⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} ↔ 𝑎𝑐))
56553adant2 1019 . . . . . . . . . 10 ((𝑎𝐴𝑏𝐴𝑐𝐴) → (⟨𝑎, 𝑐⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} ↔ 𝑎𝑐))
5753, 56bitrid 192 . . . . . . . . 9 ((𝑎𝐴𝑏𝐴𝑐𝐴) → (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐𝑎𝑐))
58 df-br 4048 . . . . . . . . . 10 (𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐 ↔ ⟨𝑏, 𝑐⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)})
59 neeq2 2391 . . . . . . . . . . . 12 (𝑣 = 𝑐 → (𝑏𝑣𝑏𝑐))
6018, 59opelopab2 4321 . . . . . . . . . . 11 ((𝑏𝐴𝑐𝐴) → (⟨𝑏, 𝑐⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} ↔ 𝑏𝑐))
61603adant1 1018 . . . . . . . . . 10 ((𝑎𝐴𝑏𝐴𝑐𝐴) → (⟨𝑏, 𝑐⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} ↔ 𝑏𝑐))
6258, 61bitrid 192 . . . . . . . . 9 ((𝑎𝐴𝑏𝐴𝑐𝐴) → (𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐𝑏𝑐))
6357, 62orbi12d 795 . . . . . . . 8 ((𝑎𝐴𝑏𝐴𝑐𝐴) → ((𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐) ↔ (𝑎𝑐𝑏𝑐)))
6463ad2antlr 489 . . . . . . 7 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) → ((𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐) ↔ (𝑎𝑐𝑏𝑐)))
6552, 64mpbird 167 . . . . . 6 (((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) ∧ 𝑎𝑏) → (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐))
6665ex 115 . . . . 5 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (𝑎𝑏 → (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐)))
6731, 66sylbid 150 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴𝑐𝐴)) → (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏 → (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐)))
6867ralrimivvva 2590 . . 3 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → ∀𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏 → (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐)))
6916notbid 669 . . . . . . 7 ((𝑎𝐴𝑏𝐴) → (¬ 𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏 ↔ ¬ 𝑎𝑏))
70 df-ne 2378 . . . . . . . 8 (𝑎𝑏 ↔ ¬ 𝑎 = 𝑏)
7170notbii 670 . . . . . . 7 𝑎𝑏 ↔ ¬ ¬ 𝑎 = 𝑏)
7269, 71bitrdi 196 . . . . . 6 ((𝑎𝐴𝑏𝐴) → (¬ 𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏 ↔ ¬ ¬ 𝑎 = 𝑏))
7372adantl 277 . . . . 5 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴)) → (¬ 𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏 ↔ ¬ ¬ 𝑎 = 𝑏))
74 equequ2 1737 . . . . . . . 8 (𝑦 = 𝑏 → (𝑎 = 𝑦𝑎 = 𝑏))
7574dcbid 840 . . . . . . 7 (𝑦 = 𝑏 → (DECID 𝑎 = 𝑦DECID 𝑎 = 𝑏))
76 simpl 109 . . . . . . . 8 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
77 simprl 529 . . . . . . . 8 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴)) → 𝑎𝐴)
7844, 76, 77rspcdva 2883 . . . . . . 7 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴)) → ∀𝑦𝐴 DECID 𝑎 = 𝑦)
79 simprr 531 . . . . . . 7 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝐴)
8075, 78, 79rspcdva 2883 . . . . . 6 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴)) → DECID 𝑎 = 𝑏)
81 notnotrdc 845 . . . . . 6 (DECID 𝑎 = 𝑏 → (¬ ¬ 𝑎 = 𝑏𝑎 = 𝑏))
8280, 81syl 14 . . . . 5 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴)) → (¬ ¬ 𝑎 = 𝑏𝑎 = 𝑏))
8373, 82sylbid 150 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ (𝑎𝐴𝑏𝐴)) → (¬ 𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏𝑎 = 𝑏))
8483ralrimivva 2589 . . 3 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → ∀𝑎𝐴𝑏𝐴𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏𝑎 = 𝑏))
8568, 84jca 306 . 2 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → (∀𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏 → (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐)) ∧ ∀𝑎𝐴𝑏𝐴𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏𝑎 = 𝑏)))
86 dftap2 7370 . 2 ({⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} TAp 𝐴 ↔ ({⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} ⊆ (𝐴 × 𝐴) ∧ (∀𝑎𝐴 ¬ 𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑎 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑎)) ∧ (∀𝑎𝐴𝑏𝐴𝑐𝐴 (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏 → (𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐𝑏{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑐)) ∧ ∀𝑎𝐴𝑏𝐴𝑎{⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)}𝑏𝑎 = 𝑏))))
872, 29, 85, 86syl3anbrc 1184 1 (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 → {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣)} TAp 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981  wcel 2177  wne 2377  wral 2485  wss 3167  cop 3637   class class class wbr 4047  {copab 4108   × cxp 4677   TAp wtap 7368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-xp 4685  df-pap 7367  df-tap 7369
This theorem is referenced by:  2onetap  7374  exmidapne  7379
  Copyright terms: Public domain W3C validator