Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsb1 | GIF version |
Description: Substitution for the left-hand side in an equality. Class version of equsb3 1949. (Contributed by Rodolfo Medina, 28-Apr-2010.) |
Ref | Expression |
---|---|
eqsb1 | ⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsb1lem 2278 | . . 3 ⊢ ([𝑤 / 𝑥]𝑥 = 𝐴 ↔ 𝑤 = 𝐴) | |
2 | 1 | sbbii 1763 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝐴 ↔ [𝑦 / 𝑤]𝑤 = 𝐴) |
3 | nfv 1526 | . . 3 ⊢ Ⅎ𝑤 𝑥 = 𝐴 | |
4 | 3 | sbco2 1963 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝐴 ↔ [𝑦 / 𝑥]𝑥 = 𝐴) |
5 | eqsb1lem 2278 | . 2 ⊢ ([𝑦 / 𝑤]𝑤 = 𝐴 ↔ 𝑦 = 𝐴) | |
6 | 2, 4, 5 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 [wsb 1760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-cleq 2168 |
This theorem is referenced by: pm13.183 2873 eqsbc1 3000 |
Copyright terms: Public domain | W3C validator |