| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsb1 | GIF version | ||
| Description: Substitution for the left-hand side in an equality. Class version of equsb3 1979. (Contributed by Rodolfo Medina, 28-Apr-2010.) |
| Ref | Expression |
|---|---|
| eqsb1 | ⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsb1lem 2308 | . . 3 ⊢ ([𝑤 / 𝑥]𝑥 = 𝐴 ↔ 𝑤 = 𝐴) | |
| 2 | 1 | sbbii 1788 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝐴 ↔ [𝑦 / 𝑤]𝑤 = 𝐴) |
| 3 | nfv 1551 | . . 3 ⊢ Ⅎ𝑤 𝑥 = 𝐴 | |
| 4 | 3 | sbco2 1993 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝐴 ↔ [𝑦 / 𝑥]𝑥 = 𝐴) |
| 5 | eqsb1lem 2308 | . 2 ⊢ ([𝑦 / 𝑤]𝑤 = 𝐴 ↔ 𝑦 = 𝐴) | |
| 6 | 2, 4, 5 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 [wsb 1785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-cleq 2198 |
| This theorem is referenced by: pm13.183 2911 eqsbc1 3038 |
| Copyright terms: Public domain | W3C validator |