ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsb1 GIF version

Theorem eqsb1 2309
Description: Substitution for the left-hand side in an equality. Class version of equsb3 1979. (Contributed by Rodolfo Medina, 28-Apr-2010.)
Assertion
Ref Expression
eqsb1 ([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem eqsb1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqsb1lem 2308 . . 3 ([𝑤 / 𝑥]𝑥 = 𝐴𝑤 = 𝐴)
21sbbii 1788 . 2 ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝐴 ↔ [𝑦 / 𝑤]𝑤 = 𝐴)
3 nfv 1551 . . 3 𝑤 𝑥 = 𝐴
43sbco2 1993 . 2 ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝐴 ↔ [𝑦 / 𝑥]𝑥 = 𝐴)
5 eqsb1lem 2308 . 2 ([𝑦 / 𝑤]𝑤 = 𝐴𝑦 = 𝐴)
62, 4, 53bitr3i 210 1 ([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-cleq 2198
This theorem is referenced by:  pm13.183  2911  eqsbc1  3038
  Copyright terms: Public domain W3C validator