Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsb1 | GIF version |
Description: Substitution for the left-hand side in an equality. Class version of equsb3 1939. (Contributed by Rodolfo Medina, 28-Apr-2010.) |
Ref | Expression |
---|---|
eqsb1 | ⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsb1lem 2268 | . . 3 ⊢ ([𝑤 / 𝑥]𝑥 = 𝐴 ↔ 𝑤 = 𝐴) | |
2 | 1 | sbbii 1753 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝐴 ↔ [𝑦 / 𝑤]𝑤 = 𝐴) |
3 | nfv 1516 | . . 3 ⊢ Ⅎ𝑤 𝑥 = 𝐴 | |
4 | 3 | sbco2 1953 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝐴 ↔ [𝑦 / 𝑥]𝑥 = 𝐴) |
5 | eqsb1lem 2268 | . 2 ⊢ ([𝑦 / 𝑤]𝑤 = 𝐴 ↔ 𝑦 = 𝐴) | |
6 | 2, 4, 5 | 3bitr3i 209 | 1 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-cleq 2158 |
This theorem is referenced by: pm13.183 2863 eqsbc1 2989 |
Copyright terms: Public domain | W3C validator |