ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsb1 GIF version

Theorem eqsb1 2269
Description: Substitution for the left-hand side in an equality. Class version of equsb3 1939. (Contributed by Rodolfo Medina, 28-Apr-2010.)
Assertion
Ref Expression
eqsb1 ([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem eqsb1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqsb1lem 2268 . . 3 ([𝑤 / 𝑥]𝑥 = 𝐴𝑤 = 𝐴)
21sbbii 1753 . 2 ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝐴 ↔ [𝑦 / 𝑤]𝑤 = 𝐴)
3 nfv 1516 . . 3 𝑤 𝑥 = 𝐴
43sbco2 1953 . 2 ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝐴 ↔ [𝑦 / 𝑥]𝑥 = 𝐴)
5 eqsb1lem 2268 . 2 ([𝑦 / 𝑤]𝑤 = 𝐴𝑦 = 𝐴)
62, 4, 53bitr3i 209 1 ([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1343  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-cleq 2158
This theorem is referenced by:  pm13.183  2863  eqsbc1  2989
  Copyright terms: Public domain W3C validator