![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqsb1 | GIF version |
Description: Substitution for the left-hand side in an equality. Class version of equsb3 1963. (Contributed by Rodolfo Medina, 28-Apr-2010.) |
Ref | Expression |
---|---|
eqsb1 | ⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsb1lem 2292 | . . 3 ⊢ ([𝑤 / 𝑥]𝑥 = 𝐴 ↔ 𝑤 = 𝐴) | |
2 | 1 | sbbii 1776 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝐴 ↔ [𝑦 / 𝑤]𝑤 = 𝐴) |
3 | nfv 1539 | . . 3 ⊢ Ⅎ𝑤 𝑥 = 𝐴 | |
4 | 3 | sbco2 1977 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝐴 ↔ [𝑦 / 𝑥]𝑥 = 𝐴) |
5 | eqsb1lem 2292 | . 2 ⊢ ([𝑦 / 𝑤]𝑤 = 𝐴 ↔ 𝑦 = 𝐴) | |
6 | 2, 4, 5 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐴 ↔ 𝑦 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 [wsb 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-cleq 2182 |
This theorem is referenced by: pm13.183 2890 eqsbc1 3017 |
Copyright terms: Public domain | W3C validator |