ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsb1 GIF version

Theorem eqsb1 2300
Description: Substitution for the left-hand side in an equality. Class version of equsb3 1970. (Contributed by Rodolfo Medina, 28-Apr-2010.)
Assertion
Ref Expression
eqsb1 ([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem eqsb1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqsb1lem 2299 . . 3 ([𝑤 / 𝑥]𝑥 = 𝐴𝑤 = 𝐴)
21sbbii 1779 . 2 ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝐴 ↔ [𝑦 / 𝑤]𝑤 = 𝐴)
3 nfv 1542 . . 3 𝑤 𝑥 = 𝐴
43sbco2 1984 . 2 ([𝑦 / 𝑤][𝑤 / 𝑥]𝑥 = 𝐴 ↔ [𝑦 / 𝑥]𝑥 = 𝐴)
5 eqsb1lem 2299 . 2 ([𝑦 / 𝑤]𝑤 = 𝐴𝑦 = 𝐴)
62, 4, 53bitr3i 210 1 ([𝑦 / 𝑥]𝑥 = 𝐴𝑦 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-cleq 2189
This theorem is referenced by:  pm13.183  2902  eqsbc1  3029
  Copyright terms: Public domain W3C validator