ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisumcom2 GIF version

Theorem fisumcom2 11430
Description: Interchange order of summation. Note that 𝐵(𝑗) and 𝐷(𝑘) are not necessarily constant expressions. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.) (Proof shortened by JJ, 2-Aug-2021.)
Hypotheses
Ref Expression
fsumcom2.1 (𝜑𝐴 ∈ Fin)
fsumcom2.2 (𝜑𝐶 ∈ Fin)
fsumcom2.3 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
fisumcom2.fi ((𝜑𝑘𝐶) → 𝐷 ∈ Fin)
fsumcom2.4 (𝜑 → ((𝑗𝐴𝑘𝐵) ↔ (𝑘𝐶𝑗𝐷)))
fsumcom2.5 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐸 ∈ ℂ)
Assertion
Ref Expression
fisumcom2 (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐸 = Σ𝑘𝐶 Σ𝑗𝐷 𝐸)
Distinct variable groups:   𝑗,𝑘,𝐴   𝐶,𝑗,𝑘   𝜑,𝑗,𝑘   𝐵,𝑘   𝐷,𝑗
Allowed substitution hints:   𝐵(𝑗)   𝐷(𝑘)   𝐸(𝑗,𝑘)

Proof of Theorem fisumcom2
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4732 . . . . . . . . 9 Rel ({𝑗} × 𝐵)
21rgenw 2532 . . . . . . . 8 𝑗𝐴 Rel ({𝑗} × 𝐵)
3 reliun 4744 . . . . . . . 8 (Rel 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∀𝑗𝐴 Rel ({𝑗} × 𝐵))
42, 3mpbir 146 . . . . . . 7 Rel 𝑗𝐴 ({𝑗} × 𝐵)
5 relcnv 5002 . . . . . . 7 Rel 𝑘𝐶 ({𝑘} × 𝐷)
6 ancom 266 . . . . . . . . . . . 12 ((𝑥 = 𝑗𝑦 = 𝑘) ↔ (𝑦 = 𝑘𝑥 = 𝑗))
7 vex 2740 . . . . . . . . . . . . 13 𝑥 ∈ V
8 vex 2740 . . . . . . . . . . . . 13 𝑦 ∈ V
97, 8opth 4234 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ↔ (𝑥 = 𝑗𝑦 = 𝑘))
108, 7opth 4234 . . . . . . . . . . . 12 (⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩ ↔ (𝑦 = 𝑘𝑥 = 𝑗))
116, 9, 103bitr4i 212 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ↔ ⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩)
1211a1i 9 . . . . . . . . . 10 (𝜑 → (⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ↔ ⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩))
13 fsumcom2.4 . . . . . . . . . 10 (𝜑 → ((𝑗𝐴𝑘𝐵) ↔ (𝑘𝐶𝑗𝐷)))
1412, 13anbi12d 473 . . . . . . . . 9 (𝜑 → ((⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐵)) ↔ (⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩ ∧ (𝑘𝐶𝑗𝐷))))
15142exbidv 1868 . . . . . . . 8 (𝜑 → (∃𝑗𝑘(⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐵)) ↔ ∃𝑗𝑘(⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩ ∧ (𝑘𝐶𝑗𝐷))))
16 eliunxp 4762 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗𝑘(⟨𝑥, 𝑦⟩ = ⟨𝑗, 𝑘⟩ ∧ (𝑗𝐴𝑘𝐵)))
177, 8opelcnv 4805 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷) ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷))
18 eliunxp 4762 . . . . . . . . 9 (⟨𝑦, 𝑥⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷) ↔ ∃𝑘𝑗(⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩ ∧ (𝑘𝐶𝑗𝐷)))
19 excom 1664 . . . . . . . . 9 (∃𝑘𝑗(⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩ ∧ (𝑘𝐶𝑗𝐷)) ↔ ∃𝑗𝑘(⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩ ∧ (𝑘𝐶𝑗𝐷)))
2017, 18, 193bitri 206 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷) ↔ ∃𝑗𝑘(⟨𝑦, 𝑥⟩ = ⟨𝑘, 𝑗⟩ ∧ (𝑘𝐶𝑗𝐷)))
2115, 16, 203bitr4g 223 . . . . . . 7 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷)))
224, 5, 21eqrelrdv 4719 . . . . . 6 (𝜑 𝑗𝐴 ({𝑗} × 𝐵) = 𝑘𝐶 ({𝑘} × 𝐷))
23 nfcv 2319 . . . . . . 7 𝑚({𝑗} × 𝐵)
24 nfcv 2319 . . . . . . . 8 𝑗{𝑚}
25 nfcsb1v 3090 . . . . . . . 8 𝑗𝑚 / 𝑗𝐵
2624, 25nfxp 4650 . . . . . . 7 𝑗({𝑚} × 𝑚 / 𝑗𝐵)
27 sneq 3602 . . . . . . . 8 (𝑗 = 𝑚 → {𝑗} = {𝑚})
28 csbeq1a 3066 . . . . . . . 8 (𝑗 = 𝑚𝐵 = 𝑚 / 𝑗𝐵)
2927, 28xpeq12d 4648 . . . . . . 7 (𝑗 = 𝑚 → ({𝑗} × 𝐵) = ({𝑚} × 𝑚 / 𝑗𝐵))
3023, 26, 29cbviun 3921 . . . . . 6 𝑗𝐴 ({𝑗} × 𝐵) = 𝑚𝐴 ({𝑚} × 𝑚 / 𝑗𝐵)
31 nfcv 2319 . . . . . . . 8 𝑛({𝑘} × 𝐷)
32 nfcv 2319 . . . . . . . . 9 𝑘{𝑛}
33 nfcsb1v 3090 . . . . . . . . 9 𝑘𝑛 / 𝑘𝐷
3432, 33nfxp 4650 . . . . . . . 8 𝑘({𝑛} × 𝑛 / 𝑘𝐷)
35 sneq 3602 . . . . . . . . 9 (𝑘 = 𝑛 → {𝑘} = {𝑛})
36 csbeq1a 3066 . . . . . . . . 9 (𝑘 = 𝑛𝐷 = 𝑛 / 𝑘𝐷)
3735, 36xpeq12d 4648 . . . . . . . 8 (𝑘 = 𝑛 → ({𝑘} × 𝐷) = ({𝑛} × 𝑛 / 𝑘𝐷))
3831, 34, 37cbviun 3921 . . . . . . 7 𝑘𝐶 ({𝑘} × 𝐷) = 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)
3938cnveqi 4798 . . . . . 6 𝑘𝐶 ({𝑘} × 𝐷) = 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)
4022, 30, 393eqtr3g 2233 . . . . 5 (𝜑 𝑚𝐴 ({𝑚} × 𝑚 / 𝑗𝐵) = 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷))
4140sumeq1d 11358 . . . 4 (𝜑 → Σ𝑧 𝑚𝐴 ({𝑚} × 𝑚 / 𝑗𝐵)(2nd𝑧) / 𝑘(1st𝑧) / 𝑗𝐸 = Σ𝑧 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)(2nd𝑧) / 𝑘(1st𝑧) / 𝑗𝐸)
42 vex 2740 . . . . . . . 8 𝑛 ∈ V
43 vex 2740 . . . . . . . 8 𝑚 ∈ V
4442, 43op1std 6143 . . . . . . 7 (𝑤 = ⟨𝑛, 𝑚⟩ → (1st𝑤) = 𝑛)
4544csbeq1d 3064 . . . . . 6 (𝑤 = ⟨𝑛, 𝑚⟩ → (1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸 = 𝑛 / 𝑘(2nd𝑤) / 𝑗𝐸)
4642, 43op2ndd 6144 . . . . . . . 8 (𝑤 = ⟨𝑛, 𝑚⟩ → (2nd𝑤) = 𝑚)
4746csbeq1d 3064 . . . . . . 7 (𝑤 = ⟨𝑛, 𝑚⟩ → (2nd𝑤) / 𝑗𝐸 = 𝑚 / 𝑗𝐸)
4847csbeq2dv 3083 . . . . . 6 (𝑤 = ⟨𝑛, 𝑚⟩ → 𝑛 / 𝑘(2nd𝑤) / 𝑗𝐸 = 𝑛 / 𝑘𝑚 / 𝑗𝐸)
4945, 48eqtrd 2210 . . . . 5 (𝑤 = ⟨𝑛, 𝑚⟩ → (1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸 = 𝑛 / 𝑘𝑚 / 𝑗𝐸)
5043, 42op2ndd 6144 . . . . . . 7 (𝑧 = ⟨𝑚, 𝑛⟩ → (2nd𝑧) = 𝑛)
5150csbeq1d 3064 . . . . . 6 (𝑧 = ⟨𝑚, 𝑛⟩ → (2nd𝑧) / 𝑘(1st𝑧) / 𝑗𝐸 = 𝑛 / 𝑘(1st𝑧) / 𝑗𝐸)
5243, 42op1std 6143 . . . . . . . 8 (𝑧 = ⟨𝑚, 𝑛⟩ → (1st𝑧) = 𝑚)
5352csbeq1d 3064 . . . . . . 7 (𝑧 = ⟨𝑚, 𝑛⟩ → (1st𝑧) / 𝑗𝐸 = 𝑚 / 𝑗𝐸)
5453csbeq2dv 3083 . . . . . 6 (𝑧 = ⟨𝑚, 𝑛⟩ → 𝑛 / 𝑘(1st𝑧) / 𝑗𝐸 = 𝑛 / 𝑘𝑚 / 𝑗𝐸)
5551, 54eqtrd 2210 . . . . 5 (𝑧 = ⟨𝑚, 𝑛⟩ → (2nd𝑧) / 𝑘(1st𝑧) / 𝑗𝐸 = 𝑛 / 𝑘𝑚 / 𝑗𝐸)
56 fsumcom2.2 . . . . . 6 (𝜑𝐶 ∈ Fin)
57 snfig 6808 . . . . . . . . 9 (𝑛 ∈ V → {𝑛} ∈ Fin)
5857elv 2741 . . . . . . . 8 {𝑛} ∈ Fin
59 fisumcom2.fi . . . . . . . . . 10 ((𝜑𝑘𝐶) → 𝐷 ∈ Fin)
6059ralrimiva 2550 . . . . . . . . 9 (𝜑 → ∀𝑘𝐶 𝐷 ∈ Fin)
6133nfel1 2330 . . . . . . . . . 10 𝑘𝑛 / 𝑘𝐷 ∈ Fin
6236eleq1d 2246 . . . . . . . . . 10 (𝑘 = 𝑛 → (𝐷 ∈ Fin ↔ 𝑛 / 𝑘𝐷 ∈ Fin))
6361, 62rspc 2835 . . . . . . . . 9 (𝑛𝐶 → (∀𝑘𝐶 𝐷 ∈ Fin → 𝑛 / 𝑘𝐷 ∈ Fin))
6460, 63mpan9 281 . . . . . . . 8 ((𝜑𝑛𝐶) → 𝑛 / 𝑘𝐷 ∈ Fin)
65 xpfi 6923 . . . . . . . 8 (({𝑛} ∈ Fin ∧ 𝑛 / 𝑘𝐷 ∈ Fin) → ({𝑛} × 𝑛 / 𝑘𝐷) ∈ Fin)
6658, 64, 65sylancr 414 . . . . . . 7 ((𝜑𝑛𝐶) → ({𝑛} × 𝑛 / 𝑘𝐷) ∈ Fin)
6766ralrimiva 2550 . . . . . 6 (𝜑 → ∀𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷) ∈ Fin)
68 disjsnxp 6232 . . . . . . 7 Disj 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)
6968a1i 9 . . . . . 6 (𝜑Disj 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷))
70 iunfidisj 6939 . . . . . 6 ((𝐶 ∈ Fin ∧ ∀𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷) ∈ Fin ∧ Disj 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)) → 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷) ∈ Fin)
7156, 67, 69, 70syl3anc 1238 . . . . 5 (𝜑 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷) ∈ Fin)
72 reliun 4744 . . . . . . 7 (Rel 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷) ↔ ∀𝑛𝐶 Rel ({𝑛} × 𝑛 / 𝑘𝐷))
73 relxp 4732 . . . . . . . 8 Rel ({𝑛} × 𝑛 / 𝑘𝐷)
7473a1i 9 . . . . . . 7 (𝑛𝐶 → Rel ({𝑛} × 𝑛 / 𝑘𝐷))
7572, 74mprgbir 2535 . . . . . 6 Rel 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)
7675a1i 9 . . . . 5 (𝜑 → Rel 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷))
77 csbeq1 3060 . . . . . . . 8 (𝑚 = (2nd𝑤) → 𝑚 / 𝑗𝐸 = (2nd𝑤) / 𝑗𝐸)
7877csbeq2dv 3083 . . . . . . 7 (𝑚 = (2nd𝑤) → (1st𝑤) / 𝑘𝑚 / 𝑗𝐸 = (1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸)
7978eleq1d 2246 . . . . . 6 (𝑚 = (2nd𝑤) → ((1st𝑤) / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ ↔ (1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸 ∈ ℂ))
80 csbeq1 3060 . . . . . . . 8 (𝑛 = (1st𝑤) → 𝑛 / 𝑘𝐷 = (1st𝑤) / 𝑘𝐷)
81 csbeq1 3060 . . . . . . . . 9 (𝑛 = (1st𝑤) → 𝑛 / 𝑘𝑚 / 𝑗𝐸 = (1st𝑤) / 𝑘𝑚 / 𝑗𝐸)
8281eleq1d 2246 . . . . . . . 8 (𝑛 = (1st𝑤) → (𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ ↔ (1st𝑤) / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ))
8380, 82raleqbidv 2684 . . . . . . 7 (𝑛 = (1st𝑤) → (∀𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ ↔ ∀𝑚 (1st𝑤) / 𝑘𝐷(1st𝑤) / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ))
84 simpl 109 . . . . . . . . . 10 ((𝜑 ∧ (𝑛𝐶𝑚𝑛 / 𝑘𝐷)) → 𝜑)
8543, 42opelcnv 4805 . . . . . . . . . . . . . . 15 (⟨𝑚, 𝑛⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷) ↔ ⟨𝑛, 𝑚⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷))
8633, 36opeliunxp2f 6233 . . . . . . . . . . . . . . 15 (⟨𝑛, 𝑚⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷) ↔ (𝑛𝐶𝑚𝑛 / 𝑘𝐷))
8785, 86sylbbr 136 . . . . . . . . . . . . . 14 ((𝑛𝐶𝑚𝑛 / 𝑘𝐷) → ⟨𝑚, 𝑛⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷))
8887adantl 277 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛𝐶𝑚𝑛 / 𝑘𝐷)) → ⟨𝑚, 𝑛⟩ ∈ 𝑘𝐶 ({𝑘} × 𝐷))
8922adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛𝐶𝑚𝑛 / 𝑘𝐷)) → 𝑗𝐴 ({𝑗} × 𝐵) = 𝑘𝐶 ({𝑘} × 𝐷))
9088, 89eleqtrrd 2257 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛𝐶𝑚𝑛 / 𝑘𝐷)) → ⟨𝑚, 𝑛⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵))
91 eliun 3888 . . . . . . . . . . . 12 (⟨𝑚, 𝑛⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗𝐴𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵))
9290, 91sylib 122 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛𝐶𝑚𝑛 / 𝑘𝐷)) → ∃𝑗𝐴𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵))
93 simpr 110 . . . . . . . . . . . . . . . 16 ((𝑗𝐴 ∧ ⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵)) → ⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵))
94 opelxp 4653 . . . . . . . . . . . . . . . 16 (⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵) ↔ (𝑚 ∈ {𝑗} ∧ 𝑛𝐵))
9593, 94sylib 122 . . . . . . . . . . . . . . 15 ((𝑗𝐴 ∧ ⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵)) → (𝑚 ∈ {𝑗} ∧ 𝑛𝐵))
9695simpld 112 . . . . . . . . . . . . . 14 ((𝑗𝐴 ∧ ⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵)) → 𝑚 ∈ {𝑗})
97 elsni 3609 . . . . . . . . . . . . . 14 (𝑚 ∈ {𝑗} → 𝑚 = 𝑗)
9896, 97syl 14 . . . . . . . . . . . . 13 ((𝑗𝐴 ∧ ⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵)) → 𝑚 = 𝑗)
99 simpl 109 . . . . . . . . . . . . 13 ((𝑗𝐴 ∧ ⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵)) → 𝑗𝐴)
10098, 99eqeltrd 2254 . . . . . . . . . . . 12 ((𝑗𝐴 ∧ ⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵)) → 𝑚𝐴)
101100rexlimiva 2589 . . . . . . . . . . 11 (∃𝑗𝐴𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵) → 𝑚𝐴)
10292, 101syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝑛𝐶𝑚𝑛 / 𝑘𝐷)) → 𝑚𝐴)
10325nfcri 2313 . . . . . . . . . . . 12 𝑗 𝑛𝑚 / 𝑗𝐵
10497equcomd 1707 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ {𝑗} → 𝑗 = 𝑚)
105104, 28syl 14 . . . . . . . . . . . . . . . 16 (𝑚 ∈ {𝑗} → 𝐵 = 𝑚 / 𝑗𝐵)
106105eleq2d 2247 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑗} → (𝑛𝐵𝑛𝑚 / 𝑗𝐵))
107106biimpa 296 . . . . . . . . . . . . . 14 ((𝑚 ∈ {𝑗} ∧ 𝑛𝐵) → 𝑛𝑚 / 𝑗𝐵)
10894, 107sylbi 121 . . . . . . . . . . . . 13 (⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵) → 𝑛𝑚 / 𝑗𝐵)
109108a1i 9 . . . . . . . . . . . 12 (𝑗𝐴 → (⟨𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵) → 𝑛𝑚 / 𝑗𝐵))
110103, 109rexlimi 2587 . . . . . . . . . . 11 (∃𝑗𝐴𝑚, 𝑛⟩ ∈ ({𝑗} × 𝐵) → 𝑛𝑚 / 𝑗𝐵)
11192, 110syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝑛𝐶𝑚𝑛 / 𝑘𝐷)) → 𝑛𝑚 / 𝑗𝐵)
112 fsumcom2.5 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐸 ∈ ℂ)
113112ralrimivva 2559 . . . . . . . . . . . . 13 (𝜑 → ∀𝑗𝐴𝑘𝐵 𝐸 ∈ ℂ)
114 nfcsb1v 3090 . . . . . . . . . . . . . . . 16 𝑗𝑚 / 𝑗𝐸
115114nfel1 2330 . . . . . . . . . . . . . . 15 𝑗𝑚 / 𝑗𝐸 ∈ ℂ
11625, 115nfralxy 2515 . . . . . . . . . . . . . 14 𝑗𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐸 ∈ ℂ
117 csbeq1a 3066 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚𝐸 = 𝑚 / 𝑗𝐸)
118117eleq1d 2246 . . . . . . . . . . . . . . 15 (𝑗 = 𝑚 → (𝐸 ∈ ℂ ↔ 𝑚 / 𝑗𝐸 ∈ ℂ))
11928, 118raleqbidv 2684 . . . . . . . . . . . . . 14 (𝑗 = 𝑚 → (∀𝑘𝐵 𝐸 ∈ ℂ ↔ ∀𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐸 ∈ ℂ))
120116, 119rspc 2835 . . . . . . . . . . . . 13 (𝑚𝐴 → (∀𝑗𝐴𝑘𝐵 𝐸 ∈ ℂ → ∀𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐸 ∈ ℂ))
121113, 120mpan9 281 . . . . . . . . . . . 12 ((𝜑𝑚𝐴) → ∀𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐸 ∈ ℂ)
122 nfcsb1v 3090 . . . . . . . . . . . . . 14 𝑘𝑛 / 𝑘𝑚 / 𝑗𝐸
123122nfel1 2330 . . . . . . . . . . . . 13 𝑘𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ
124 csbeq1a 3066 . . . . . . . . . . . . . 14 (𝑘 = 𝑛𝑚 / 𝑗𝐸 = 𝑛 / 𝑘𝑚 / 𝑗𝐸)
125124eleq1d 2246 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑚 / 𝑗𝐸 ∈ ℂ ↔ 𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ))
126123, 125rspc 2835 . . . . . . . . . . . 12 (𝑛𝑚 / 𝑗𝐵 → (∀𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐸 ∈ ℂ → 𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ))
127121, 126syl5com 29 . . . . . . . . . . 11 ((𝜑𝑚𝐴) → (𝑛𝑚 / 𝑗𝐵𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ))
128127impr 379 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝐴𝑛𝑚 / 𝑗𝐵)) → 𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ)
12984, 102, 111, 128syl12anc 1236 . . . . . . . . 9 ((𝜑 ∧ (𝑛𝐶𝑚𝑛 / 𝑘𝐷)) → 𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ)
130129ralrimivva 2559 . . . . . . . 8 (𝜑 → ∀𝑛𝐶𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ)
131130adantr 276 . . . . . . 7 ((𝜑𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)) → ∀𝑛𝐶𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ)
132 simpr 110 . . . . . . . . 9 ((𝜑𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)) → 𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷))
133 eliun 3888 . . . . . . . . 9 (𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷) ↔ ∃𝑛𝐶 𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷))
134132, 133sylib 122 . . . . . . . 8 ((𝜑𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)) → ∃𝑛𝐶 𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷))
135 xp1st 6160 . . . . . . . . . . . 12 (𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷) → (1st𝑤) ∈ {𝑛})
136135adantl 277 . . . . . . . . . . 11 ((𝑛𝐶𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷)) → (1st𝑤) ∈ {𝑛})
137 elsni 3609 . . . . . . . . . . 11 ((1st𝑤) ∈ {𝑛} → (1st𝑤) = 𝑛)
138136, 137syl 14 . . . . . . . . . 10 ((𝑛𝐶𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷)) → (1st𝑤) = 𝑛)
139 simpl 109 . . . . . . . . . 10 ((𝑛𝐶𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷)) → 𝑛𝐶)
140138, 139eqeltrd 2254 . . . . . . . . 9 ((𝑛𝐶𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷)) → (1st𝑤) ∈ 𝐶)
141140rexlimiva 2589 . . . . . . . 8 (∃𝑛𝐶 𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷) → (1st𝑤) ∈ 𝐶)
142134, 141syl 14 . . . . . . 7 ((𝜑𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)) → (1st𝑤) ∈ 𝐶)
14383, 131, 142rspcdva 2846 . . . . . 6 ((𝜑𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)) → ∀𝑚 (1st𝑤) / 𝑘𝐷(1st𝑤) / 𝑘𝑚 / 𝑗𝐸 ∈ ℂ)
144 xp2nd 6161 . . . . . . . . . 10 (𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷) → (2nd𝑤) ∈ 𝑛 / 𝑘𝐷)
145144adantl 277 . . . . . . . . 9 ((𝑛𝐶𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷)) → (2nd𝑤) ∈ 𝑛 / 𝑘𝐷)
146138csbeq1d 3064 . . . . . . . . 9 ((𝑛𝐶𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷)) → (1st𝑤) / 𝑘𝐷 = 𝑛 / 𝑘𝐷)
147145, 146eleqtrrd 2257 . . . . . . . 8 ((𝑛𝐶𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷)) → (2nd𝑤) ∈ (1st𝑤) / 𝑘𝐷)
148147rexlimiva 2589 . . . . . . 7 (∃𝑛𝐶 𝑤 ∈ ({𝑛} × 𝑛 / 𝑘𝐷) → (2nd𝑤) ∈ (1st𝑤) / 𝑘𝐷)
149134, 148syl 14 . . . . . 6 ((𝜑𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)) → (2nd𝑤) ∈ (1st𝑤) / 𝑘𝐷)
15079, 143, 149rspcdva 2846 . . . . 5 ((𝜑𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)) → (1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸 ∈ ℂ)
15149, 55, 71, 76, 150fsumcnv 11429 . . . 4 (𝜑 → Σ𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)(1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸 = Σ𝑧 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)(2nd𝑧) / 𝑘(1st𝑧) / 𝑗𝐸)
15241, 151eqtr4d 2213 . . 3 (𝜑 → Σ𝑧 𝑚𝐴 ({𝑚} × 𝑚 / 𝑗𝐵)(2nd𝑧) / 𝑘(1st𝑧) / 𝑗𝐸 = Σ𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)(1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸)
153 fsumcom2.1 . . . 4 (𝜑𝐴 ∈ Fin)
154 fsumcom2.3 . . . . . 6 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
155154ralrimiva 2550 . . . . 5 (𝜑 → ∀𝑗𝐴 𝐵 ∈ Fin)
15625nfel1 2330 . . . . . 6 𝑗𝑚 / 𝑗𝐵 ∈ Fin
15728eleq1d 2246 . . . . . 6 (𝑗 = 𝑚 → (𝐵 ∈ Fin ↔ 𝑚 / 𝑗𝐵 ∈ Fin))
158156, 157rspc 2835 . . . . 5 (𝑚𝐴 → (∀𝑗𝐴 𝐵 ∈ Fin → 𝑚 / 𝑗𝐵 ∈ Fin))
159155, 158mpan9 281 . . . 4 ((𝜑𝑚𝐴) → 𝑚 / 𝑗𝐵 ∈ Fin)
16055, 153, 159, 128fsum2d 11427 . . 3 (𝜑 → Σ𝑚𝐴 Σ𝑛 𝑚 / 𝑗𝐵𝑛 / 𝑘𝑚 / 𝑗𝐸 = Σ𝑧 𝑚𝐴 ({𝑚} × 𝑚 / 𝑗𝐵)(2nd𝑧) / 𝑘(1st𝑧) / 𝑗𝐸)
16149, 56, 64, 129fsum2d 11427 . . 3 (𝜑 → Σ𝑛𝐶 Σ𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸 = Σ𝑤 𝑛𝐶 ({𝑛} × 𝑛 / 𝑘𝐷)(1st𝑤) / 𝑘(2nd𝑤) / 𝑗𝐸)
162152, 160, 1613eqtr4d 2220 . 2 (𝜑 → Σ𝑚𝐴 Σ𝑛 𝑚 / 𝑗𝐵𝑛 / 𝑘𝑚 / 𝑗𝐸 = Σ𝑛𝐶 Σ𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸)
163 nfcv 2319 . . 3 𝑚Σ𝑘𝐵 𝐸
164 nfcv 2319 . . . . 5 𝑗𝑛
165164, 114nfcsb 3094 . . . 4 𝑗𝑛 / 𝑘𝑚 / 𝑗𝐸
16625, 165nfsum 11349 . . 3 𝑗Σ𝑛 𝑚 / 𝑗𝐵𝑛 / 𝑘𝑚 / 𝑗𝐸
167 nfcv 2319 . . . . 5 𝑛𝐸
168 nfcsb1v 3090 . . . . 5 𝑘𝑛 / 𝑘𝐸
169 csbeq1a 3066 . . . . 5 (𝑘 = 𝑛𝐸 = 𝑛 / 𝑘𝐸)
170167, 168, 169cbvsumi 11354 . . . 4 Σ𝑘𝐵 𝐸 = Σ𝑛𝐵 𝑛 / 𝑘𝐸
171117csbeq2dv 3083 . . . . . 6 (𝑗 = 𝑚𝑛 / 𝑘𝐸 = 𝑛 / 𝑘𝑚 / 𝑗𝐸)
172171adantr 276 . . . . 5 ((𝑗 = 𝑚𝑛𝐵) → 𝑛 / 𝑘𝐸 = 𝑛 / 𝑘𝑚 / 𝑗𝐸)
17328, 172sumeq12dv 11364 . . . 4 (𝑗 = 𝑚 → Σ𝑛𝐵 𝑛 / 𝑘𝐸 = Σ𝑛 𝑚 / 𝑗𝐵𝑛 / 𝑘𝑚 / 𝑗𝐸)
174170, 173eqtrid 2222 . . 3 (𝑗 = 𝑚 → Σ𝑘𝐵 𝐸 = Σ𝑛 𝑚 / 𝑗𝐵𝑛 / 𝑘𝑚 / 𝑗𝐸)
175163, 166, 174cbvsumi 11354 . 2 Σ𝑗𝐴 Σ𝑘𝐵 𝐸 = Σ𝑚𝐴 Σ𝑛 𝑚 / 𝑗𝐵𝑛 / 𝑘𝑚 / 𝑗𝐸
176 nfcv 2319 . . 3 𝑛Σ𝑗𝐷 𝐸
17733, 122nfsum 11349 . . 3 𝑘Σ𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸
178 nfcv 2319 . . . . 5 𝑚𝐸
179178, 114, 117cbvsumi 11354 . . . 4 Σ𝑗𝐷 𝐸 = Σ𝑚𝐷 𝑚 / 𝑗𝐸
180124adantr 276 . . . . 5 ((𝑘 = 𝑛𝑚𝐷) → 𝑚 / 𝑗𝐸 = 𝑛 / 𝑘𝑚 / 𝑗𝐸)
18136, 180sumeq12dv 11364 . . . 4 (𝑘 = 𝑛 → Σ𝑚𝐷 𝑚 / 𝑗𝐸 = Σ𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸)
182179, 181eqtrid 2222 . . 3 (𝑘 = 𝑛 → Σ𝑗𝐷 𝐸 = Σ𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸)
183176, 177, 182cbvsumi 11354 . 2 Σ𝑘𝐶 Σ𝑗𝐷 𝐸 = Σ𝑛𝐶 Σ𝑚 𝑛 / 𝑘𝐷𝑛 / 𝑘𝑚 / 𝑗𝐸
184162, 175, 1833eqtr4g 2235 1 (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐸 = Σ𝑘𝐶 Σ𝑗𝐷 𝐸)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  wral 2455  wrex 2456  Vcvv 2737  csb 3057  {csn 3591  cop 3594   ciun 3884  Disj wdisj 3977   × cxp 4621  ccnv 4622  Rel wrel 4628  cfv 5212  1st c1st 6133  2nd c2nd 6134  Fincfn 6734  cc 7800  Σcsu 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by:  fsumcom  11431  fisum0diag  11433
  Copyright terms: Public domain W3C validator