Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqcom | GIF version |
Description: Commutative law for class equality. Theorem 6.5 of [Quine] p. 41. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqcom | ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 139 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐴)) | |
2 | 1 | albii 1458 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐴)) |
3 | dfcleq 2159 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
4 | dfcleq 2159 | . 2 ⊢ (𝐵 = 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐴)) | |
5 | 2, 3, 4 | 3bitr4i 211 | 1 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) |
Copyright terms: Public domain | W3C validator |