ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equs4 GIF version

Theorem equs4 1718
Description: Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.)
Assertion
Ref Expression
equs4 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem equs4
StepHypRef Expression
1 a9e 1689 . . 3 𝑥 𝑥 = 𝑦
2 19.29 1613 . . 3 ((∀𝑥(𝑥 = 𝑦𝜑) ∧ ∃𝑥 𝑥 = 𝑦) → ∃𝑥((𝑥 = 𝑦𝜑) ∧ 𝑥 = 𝑦))
31, 2mpan2 423 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥((𝑥 = 𝑦𝜑) ∧ 𝑥 = 𝑦))
4 ancl 316 . . . 4 ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦 → (𝑥 = 𝑦𝜑)))
54imp 123 . . 3 (((𝑥 = 𝑦𝜑) ∧ 𝑥 = 𝑦) → (𝑥 = 𝑦𝜑))
65eximi 1593 . 2 (∃𝑥((𝑥 = 𝑦𝜑) ∧ 𝑥 = 𝑦) → ∃𝑥(𝑥 = 𝑦𝜑))
73, 6syl 14 1 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1346   = wceq 1348  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sb2  1760  equs45f  1795
  Copyright terms: Public domain W3C validator