Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equs4 | GIF version |
Description: Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.) |
Ref | Expression |
---|---|
equs4 | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a9e 1684 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
2 | 19.29 1608 | . . 3 ⊢ ((∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥 𝑥 = 𝑦) → ∃𝑥((𝑥 = 𝑦 → 𝜑) ∧ 𝑥 = 𝑦)) | |
3 | 1, 2 | mpan2 422 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥((𝑥 = 𝑦 → 𝜑) ∧ 𝑥 = 𝑦)) |
4 | ancl 316 | . . . 4 ⊢ ((𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → (𝑥 = 𝑦 ∧ 𝜑))) | |
5 | 4 | imp 123 | . . 3 ⊢ (((𝑥 = 𝑦 → 𝜑) ∧ 𝑥 = 𝑦) → (𝑥 = 𝑦 ∧ 𝜑)) |
6 | 5 | eximi 1588 | . 2 ⊢ (∃𝑥((𝑥 = 𝑦 → 𝜑) ∧ 𝑥 = 𝑦) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
7 | 3, 6 | syl 14 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1341 = wceq 1343 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sb2 1755 equs45f 1790 |
Copyright terms: Public domain | W3C validator |