| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > equsalh | GIF version | ||
| Description: A useful equivalence related to substitution. New proofs should use equsal 1741 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| equsalh.1 | ⊢ (𝜓 → ∀𝑥𝜓) | 
| equsalh.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| equsalh | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | equsalh.2 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | equsalh.1 | . . . . . 6 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | 2 | 19.3h 1567 | . . . . 5 ⊢ (∀𝑥𝜓 ↔ 𝜓) | 
| 4 | 1, 3 | bitr4di 198 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥𝜓)) | 
| 5 | 4 | pm5.74i 180 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → ∀𝑥𝜓)) | 
| 6 | 5 | albii 1484 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜓)) | 
| 7 | 2 | a1d 22 | . . . 4 ⊢ (𝜓 → (𝑥 = 𝑦 → ∀𝑥𝜓)) | 
| 8 | 2, 7 | alrimih 1483 | . . 3 ⊢ (𝜓 → ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜓)) | 
| 9 | ax9o 1712 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜓) → 𝜓) | |
| 10 | 8, 9 | impbii 126 | . 2 ⊢ (𝜓 ↔ ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜓)) | 
| 11 | 6, 10 | bitr4i 187 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: sb6x 1793 dvelimfALT2 1831 dvelimALT 2029 dvelimfv 2030 dvelimor 2037 | 
| Copyright terms: Public domain | W3C validator |