| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equsalh | GIF version | ||
| Description: A useful equivalence related to substitution. New proofs should use equsal 1751 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| equsalh.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
| equsalh.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| equsalh | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsalh.2 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | equsalh.1 | . . . . . 6 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | 2 | 19.3h 1577 | . . . . 5 ⊢ (∀𝑥𝜓 ↔ 𝜓) |
| 4 | 1, 3 | bitr4di 198 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥𝜓)) |
| 5 | 4 | pm5.74i 180 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → ∀𝑥𝜓)) |
| 6 | 5 | albii 1494 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜓)) |
| 7 | 2 | a1d 22 | . . . 4 ⊢ (𝜓 → (𝑥 = 𝑦 → ∀𝑥𝜓)) |
| 8 | 2, 7 | alrimih 1493 | . . 3 ⊢ (𝜓 → ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜓)) |
| 9 | ax9o 1722 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜓) → 𝜓) | |
| 10 | 8, 9 | impbii 126 | . 2 ⊢ (𝜓 ↔ ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜓)) |
| 11 | 6, 10 | bitr4i 187 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sb6x 1803 dvelimfALT2 1841 dvelimALT 2039 dvelimfv 2040 dvelimor 2047 |
| Copyright terms: Public domain | W3C validator |