| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 19.29 | GIF version | ||
| Description: Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) | 
| Ref | Expression | 
|---|---|
| 19.29 | ⊢ ((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm3.2 139 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 2 | 1 | alimi 1469 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥(𝜓 → (𝜑 ∧ 𝜓))) | 
| 3 | exim 1613 | . . 3 ⊢ (∀𝑥(𝜓 → (𝜑 ∧ 𝜓)) → (∃𝑥𝜓 → ∃𝑥(𝜑 ∧ 𝜓))) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥(𝜑 ∧ 𝜓))) | 
| 5 | 4 | imp 124 | 1 ⊢ ((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: 19.29r 1635 19.29x 1637 19.35-1 1638 equs4 1739 equvini 1772 rexxfrd 4498 funimaexglem 5341 bj-inex 15553 | 
| Copyright terms: Public domain | W3C validator |