Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.29 | GIF version |
Description: Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
19.29 | ⊢ ((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 138 | . . . 4 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
2 | 1 | alimi 1443 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑥(𝜓 → (𝜑 ∧ 𝜓))) |
3 | exim 1587 | . . 3 ⊢ (∀𝑥(𝜓 → (𝜑 ∧ 𝜓)) → (∃𝑥𝜓 → ∃𝑥(𝜑 ∧ 𝜓))) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥(𝜑 ∧ 𝜓))) |
5 | 4 | imp 123 | 1 ⊢ ((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.29r 1609 19.29x 1611 19.35-1 1612 equs4 1713 equvini 1746 rexxfrd 4441 funimaexglem 5271 bj-inex 13789 |
Copyright terms: Public domain | W3C validator |