ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb2 GIF version

Theorem sb2 1789
Description: One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sb2 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)

Proof of Theorem sb2
StepHypRef Expression
1 ax-4 1532 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
2 equs4 1747 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
3 df-sb 1785 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
41, 2, 3sylanbrc 417 1 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1370  wex 1514  [wsb 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-i9 1552  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-sb 1785
This theorem is referenced by:  stdpc4  1797  equsb1  1807  equsb2  1808  sbiedh  1809  sb6f  1825  hbsb2a  1828  hbsb2e  1829  sbcof2  1832  sb3  1853  sb4b  1856  sb4bor  1857  hbsb2  1858  nfsb2or  1859  sb6rf  1875  sbi1v  1914  sbalyz  2026  iota4  5248
  Copyright terms: Public domain W3C validator