Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sb2 | GIF version |
Description: One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sb2 | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 1487 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
2 | equs4 1702 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
3 | df-sb 1740 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
4 | 1, 2, 3 | sylanbrc 414 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1330 ∃wex 1469 [wsb 1739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-i9 1507 ax-ial 1511 |
This theorem depends on definitions: df-bi 116 df-sb 1740 |
This theorem is referenced by: stdpc4 1752 equsb1 1762 equsb2 1763 sbiedh 1764 sb6f 1780 hbsb2a 1783 hbsb2e 1784 sbcof2 1787 sb3 1808 sb4b 1811 sb4bor 1812 hbsb2 1813 nfsb2or 1814 sb6rf 1830 sbi1v 1868 sbalyz 1976 iota4 5146 |
Copyright terms: Public domain | W3C validator |