ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb2 GIF version

Theorem sb2 1778
Description: One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sb2 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)

Proof of Theorem sb2
StepHypRef Expression
1 ax-4 1521 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
2 equs4 1736 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
3 df-sb 1774 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
41, 2, 3sylanbrc 417 1 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362  wex 1503  [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-sb 1774
This theorem is referenced by:  stdpc4  1786  equsb1  1796  equsb2  1797  sbiedh  1798  sb6f  1814  hbsb2a  1817  hbsb2e  1818  sbcof2  1821  sb3  1842  sb4b  1845  sb4bor  1846  hbsb2  1847  nfsb2or  1848  sb6rf  1864  sbi1v  1903  sbalyz  2015  iota4  5234
  Copyright terms: Public domain W3C validator