ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb2 GIF version

Theorem sb2 1760
Description: One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sb2 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)

Proof of Theorem sb2
StepHypRef Expression
1 ax-4 1503 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
2 equs4 1718 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
3 df-sb 1756 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
41, 2, 3sylanbrc 415 1 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1346  wex 1485  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-sb 1756
This theorem is referenced by:  stdpc4  1768  equsb1  1778  equsb2  1779  sbiedh  1780  sb6f  1796  hbsb2a  1799  hbsb2e  1800  sbcof2  1803  sb3  1824  sb4b  1827  sb4bor  1828  hbsb2  1829  nfsb2or  1830  sb6rf  1846  sbi1v  1884  sbalyz  1992  iota4  5178
  Copyright terms: Public domain W3C validator