ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb2 GIF version

Theorem sb2 1813
Description: One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sb2 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)

Proof of Theorem sb2
StepHypRef Expression
1 ax-4 1556 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
2 equs4 1771 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
3 df-sb 1809 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
41, 2, 3sylanbrc 417 1 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1393  wex 1538  [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-i9 1576  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-sb 1809
This theorem is referenced by:  stdpc4  1821  equsb1  1831  equsb2  1832  sbiedh  1833  sb6f  1849  hbsb2a  1852  hbsb2e  1853  sbcof2  1856  sb3  1877  sb4b  1880  sb4bor  1881  hbsb2  1882  nfsb2or  1883  sb6rf  1899  sbi1v  1938  sbalyz  2050  iota4  5297
  Copyright terms: Public domain W3C validator