Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sb2 | GIF version |
Description: One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sb2 | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 1503 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
2 | equs4 1718 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
3 | df-sb 1756 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
4 | 1, 2, 3 | sylanbrc 415 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1346 ∃wex 1485 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-sb 1756 |
This theorem is referenced by: stdpc4 1768 equsb1 1778 equsb2 1779 sbiedh 1780 sb6f 1796 hbsb2a 1799 hbsb2e 1800 sbcof2 1803 sb3 1824 sb4b 1827 sb4bor 1828 hbsb2 1829 nfsb2or 1830 sb6rf 1846 sbi1v 1884 sbalyz 1992 iota4 5178 |
Copyright terms: Public domain | W3C validator |