| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sb2 | GIF version | ||
| Description: One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sb2 | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-4 1524 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
| 2 | equs4 1739 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 3 | df-sb 1777 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 |
| This theorem is referenced by: stdpc4 1789 equsb1 1799 equsb2 1800 sbiedh 1801 sb6f 1817 hbsb2a 1820 hbsb2e 1821 sbcof2 1824 sb3 1845 sb4b 1848 sb4bor 1849 hbsb2 1850 nfsb2or 1851 sb6rf 1867 sbi1v 1906 sbalyz 2018 iota4 5238 |
| Copyright terms: Public domain | W3C validator |