| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sb2 | GIF version | ||
| Description: One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sb2 | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-4 1534 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
| 2 | equs4 1749 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 3 | df-sb 1787 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 ∃wex 1516 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 |
| This theorem is referenced by: stdpc4 1799 equsb1 1809 equsb2 1810 sbiedh 1811 sb6f 1827 hbsb2a 1830 hbsb2e 1831 sbcof2 1834 sb3 1855 sb4b 1858 sb4bor 1859 hbsb2 1860 nfsb2or 1861 sb6rf 1877 sbi1v 1916 sbalyz 2028 iota4 5260 |
| Copyright terms: Public domain | W3C validator |