ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eumo GIF version

Theorem eumo 2109
Description: Existential uniqueness implies "at most one". (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.)
Assertion
Ref Expression
eumo (∃!𝑥𝜑 → ∃*𝑥𝜑)

Proof of Theorem eumo
StepHypRef Expression
1 ax-1 6 . 2 (∃!𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑))
2 df-mo 2081 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
31, 2sylibr 134 1 (∃!𝑥𝜑 → ∃*𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1538  ∃!weu 2077  ∃*wmo 2078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-mo 2081
This theorem is referenced by:  eumoi  2110  eu5  2125  euimmo  2145  moaneu  2154  eupick  2157  2eumo  2166  moeq3dc  2979  nfunsn  5663  fnoprabg  6104  uptx  14942  txcn  14943
  Copyright terms: Public domain W3C validator