ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eumo0 GIF version

Theorem eumo0 2108
Description: Existential uniqueness implies "at most one". (Contributed by NM, 8-Jul-1994.)
Hypothesis
Ref Expression
eumo0.1 (𝜑 → ∀𝑦𝜑)
Assertion
Ref Expression
eumo0 (∃!𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem eumo0
StepHypRef Expression
1 eumo0.1 . . 3 (𝜑 → ∀𝑦𝜑)
21euf 2082 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
3 biimp 118 . . . 4 ((𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑦))
43alimi 1501 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦))
54eximi 1646 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
62, 5sylbi 121 1 (∃!𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393  wex 1538  ∃!weu 2077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-eu 2080
This theorem is referenced by:  eu2  2122  eu3h  2123
  Copyright terms: Public domain W3C validator