![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eumo0 | GIF version |
Description: Existential uniqueness implies "at most one". (Contributed by NM, 8-Jul-1994.) |
Ref | Expression |
---|---|
eumo0.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
Ref | Expression |
---|---|
eumo0 | ⊢ (∃!𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo0.1 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | 1 | euf 2031 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
3 | biimp 118 | . . . 4 ⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) | |
4 | 3 | alimi 1455 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
5 | 4 | eximi 1600 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
6 | 2, 5 | sylbi 121 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 ∃wex 1492 ∃!weu 2026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-eu 2029 |
This theorem is referenced by: eu2 2070 eu3h 2071 |
Copyright terms: Public domain | W3C validator |