ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moaneu GIF version

Theorem moaneu 2095
Description: Nested at-most-one and unique existential quantifiers. (Contributed by NM, 25-Jan-2006.)
Assertion
Ref Expression
moaneu ∃*𝑥(𝜑 ∧ ∃!𝑥𝜑)

Proof of Theorem moaneu
StepHypRef Expression
1 eumo 2051 . . 3 (∃!𝑥𝜑 → ∃*𝑥𝜑)
2 nfeu1 2030 . . . 4 𝑥∃!𝑥𝜑
32moanim 2093 . . 3 (∃*𝑥(∃!𝑥𝜑𝜑) ↔ (∃!𝑥𝜑 → ∃*𝑥𝜑))
41, 3mpbir 145 . 2 ∃*𝑥(∃!𝑥𝜑𝜑)
5 ancom 264 . . 3 ((𝜑 ∧ ∃!𝑥𝜑) ↔ (∃!𝑥𝜑𝜑))
65mobii 2056 . 2 (∃*𝑥(𝜑 ∧ ∃!𝑥𝜑) ↔ ∃*𝑥(∃!𝑥𝜑𝜑))
74, 6mpbir 145 1 ∃*𝑥(𝜑 ∧ ∃!𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  ∃!weu 2019  ∃*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator