Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moaneu | GIF version |
Description: Nested at-most-one and unique existential quantifiers. (Contributed by NM, 25-Jan-2006.) |
Ref | Expression |
---|---|
moaneu | ⊢ ∃*𝑥(𝜑 ∧ ∃!𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2038 | . . 3 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
2 | nfeu1 2017 | . . . 4 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
3 | 2 | moanim 2080 | . . 3 ⊢ (∃*𝑥(∃!𝑥𝜑 ∧ 𝜑) ↔ (∃!𝑥𝜑 → ∃*𝑥𝜑)) |
4 | 1, 3 | mpbir 145 | . 2 ⊢ ∃*𝑥(∃!𝑥𝜑 ∧ 𝜑) |
5 | ancom 264 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥𝜑) ↔ (∃!𝑥𝜑 ∧ 𝜑)) | |
6 | 5 | mobii 2043 | . 2 ⊢ (∃*𝑥(𝜑 ∧ ∃!𝑥𝜑) ↔ ∃*𝑥(∃!𝑥𝜑 ∧ 𝜑)) |
7 | 4, 6 | mpbir 145 | 1 ⊢ ∃*𝑥(𝜑 ∧ ∃!𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃!weu 2006 ∃*wmo 2007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |