| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > moaneu | GIF version | ||
| Description: Nested at-most-one and unique existential quantifiers. (Contributed by NM, 25-Jan-2006.) | 
| Ref | Expression | 
|---|---|
| moaneu | ⊢ ∃*𝑥(𝜑 ∧ ∃!𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eumo 2077 | . . 3 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
| 2 | nfeu1 2056 | . . . 4 ⊢ Ⅎ𝑥∃!𝑥𝜑 | |
| 3 | 2 | moanim 2119 | . . 3 ⊢ (∃*𝑥(∃!𝑥𝜑 ∧ 𝜑) ↔ (∃!𝑥𝜑 → ∃*𝑥𝜑)) | 
| 4 | 1, 3 | mpbir 146 | . 2 ⊢ ∃*𝑥(∃!𝑥𝜑 ∧ 𝜑) | 
| 5 | ancom 266 | . . 3 ⊢ ((𝜑 ∧ ∃!𝑥𝜑) ↔ (∃!𝑥𝜑 ∧ 𝜑)) | |
| 6 | 5 | mobii 2082 | . 2 ⊢ (∃*𝑥(𝜑 ∧ ∃!𝑥𝜑) ↔ ∃*𝑥(∃!𝑥𝜑 ∧ 𝜑)) | 
| 7 | 4, 6 | mpbir 146 | 1 ⊢ ∃*𝑥(𝜑 ∧ ∃!𝑥𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∃!weu 2045 ∃*wmo 2046 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |