| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eu5 | GIF version | ||
| Description: Uniqueness in terms of "at most one". (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.) |
| Ref | Expression |
|---|---|
| eu5 | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2083 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
| 2 | eumo 2085 | . . 3 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (∃!𝑥𝜑 → (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| 4 | df-mo 2057 | . . . . 5 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 5 | 4 | biimpi 120 | . . . 4 ⊢ (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
| 6 | 5 | imp 124 | . . 3 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥𝜑) → ∃!𝑥𝜑) |
| 7 | 6 | ancoms 268 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) → ∃!𝑥𝜑) |
| 8 | 3, 7 | impbii 126 | 1 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1514 ∃!weu 2053 ∃*wmo 2054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 |
| This theorem is referenced by: exmoeu2 2101 euan 2109 eu4 2115 euim 2121 euexex 2138 2euex 2140 2euswapdc 2144 2exeu 2145 reu5 2722 reuss2 3452 funcnv3 5330 fnres 5386 fnopabg 5393 brprcneu 5563 dff3im 5719 recmulnqg 7486 uptx 14664 |
| Copyright terms: Public domain | W3C validator |