ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu5 GIF version

Theorem eu5 2089
Description: Uniqueness in terms of "at most one". (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.)
Assertion
Ref Expression
eu5 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))

Proof of Theorem eu5
StepHypRef Expression
1 euex 2072 . . 3 (∃!𝑥𝜑 → ∃𝑥𝜑)
2 eumo 2074 . . 3 (∃!𝑥𝜑 → ∃*𝑥𝜑)
31, 2jca 306 . 2 (∃!𝑥𝜑 → (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
4 df-mo 2046 . . . . 5 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
54biimpi 120 . . . 4 (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑))
65imp 124 . . 3 ((∃*𝑥𝜑 ∧ ∃𝑥𝜑) → ∃!𝑥𝜑)
76ancoms 268 . 2 ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) → ∃!𝑥𝜑)
83, 7impbii 126 1 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1503  ∃!weu 2042  ∃*wmo 2043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046
This theorem is referenced by:  exmoeu2  2090  euan  2098  eu4  2104  euim  2110  euexex  2127  2euex  2129  2euswapdc  2133  2exeu  2134  reu5  2711  reuss2  3439  funcnv3  5316  fnres  5370  fnopabg  5377  brprcneu  5547  dff3im  5703  recmulnqg  7451  uptx  14442
  Copyright terms: Public domain W3C validator