| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eu5 | GIF version | ||
| Description: Uniqueness in terms of "at most one". (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.) |
| Ref | Expression |
|---|---|
| eu5 | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2107 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
| 2 | eumo 2109 | . . 3 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (∃!𝑥𝜑 → (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| 4 | df-mo 2081 | . . . . 5 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 5 | 4 | biimpi 120 | . . . 4 ⊢ (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
| 6 | 5 | imp 124 | . . 3 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥𝜑) → ∃!𝑥𝜑) |
| 7 | 6 | ancoms 268 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) → ∃!𝑥𝜑) |
| 8 | 3, 7 | impbii 126 | 1 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1538 ∃!weu 2077 ∃*wmo 2078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 |
| This theorem is referenced by: exmoeu2 2126 euan 2134 eu4 2140 euim 2146 euexex 2163 2euex 2165 2euswapdc 2169 2exeu 2170 reu5 2749 reuss2 3484 funcnv3 5382 fnres 5439 fnopabg 5446 brprcneu 5619 dff3im 5779 recmulnqg 7574 uptx 14942 |
| Copyright terms: Public domain | W3C validator |