ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu5 GIF version

Theorem eu5 2125
Description: Uniqueness in terms of "at most one". (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.)
Assertion
Ref Expression
eu5 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))

Proof of Theorem eu5
StepHypRef Expression
1 euex 2107 . . 3 (∃!𝑥𝜑 → ∃𝑥𝜑)
2 eumo 2109 . . 3 (∃!𝑥𝜑 → ∃*𝑥𝜑)
31, 2jca 306 . 2 (∃!𝑥𝜑 → (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
4 df-mo 2081 . . . . 5 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
54biimpi 120 . . . 4 (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑))
65imp 124 . . 3 ((∃*𝑥𝜑 ∧ ∃𝑥𝜑) → ∃!𝑥𝜑)
76ancoms 268 . 2 ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) → ∃!𝑥𝜑)
83, 7impbii 126 1 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1538  ∃!weu 2077  ∃*wmo 2078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by:  exmoeu2  2126  euan  2134  eu4  2140  euim  2146  euexex  2163  2euex  2165  2euswapdc  2169  2exeu  2170  reu5  2749  reuss2  3484  funcnv3  5382  fnres  5439  fnopabg  5446  brprcneu  5619  dff3im  5779  recmulnqg  7574  uptx  14942
  Copyright terms: Public domain W3C validator