![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eu5 | GIF version |
Description: Uniqueness in terms of "at most one". (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.) |
Ref | Expression |
---|---|
eu5 | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2072 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
2 | eumo 2074 | . . 3 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (∃!𝑥𝜑 → (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
4 | df-mo 2046 | . . . . 5 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
5 | 4 | biimpi 120 | . . . 4 ⊢ (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
6 | 5 | imp 124 | . . 3 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥𝜑) → ∃!𝑥𝜑) |
7 | 6 | ancoms 268 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) → ∃!𝑥𝜑) |
8 | 3, 7 | impbii 126 | 1 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1503 ∃!weu 2042 ∃*wmo 2043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 |
This theorem is referenced by: exmoeu2 2090 euan 2098 eu4 2104 euim 2110 euexex 2127 2euex 2129 2euswapdc 2133 2exeu 2134 reu5 2711 reuss2 3439 funcnv3 5316 fnres 5370 fnopabg 5377 brprcneu 5547 dff3im 5703 recmulnqg 7451 uptx 14442 |
Copyright terms: Public domain | W3C validator |