![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eu5 | GIF version |
Description: Uniqueness in terms of "at most one." (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.) |
Ref | Expression |
---|---|
eu5 | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 1990 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
2 | eumo 1992 | . . 3 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
3 | 1, 2 | jca 302 | . 2 ⊢ (∃!𝑥𝜑 → (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
4 | df-mo 1964 | . . . . 5 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
5 | 4 | biimpi 119 | . . . 4 ⊢ (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
6 | 5 | imp 123 | . . 3 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥𝜑) → ∃!𝑥𝜑) |
7 | 6 | ancoms 266 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) → ∃!𝑥𝜑) |
8 | 3, 7 | impbii 125 | 1 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∃wex 1436 ∃!weu 1960 ∃*wmo 1961 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 |
This theorem depends on definitions: df-bi 116 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 |
This theorem is referenced by: exmoeu2 2008 euan 2016 eu4 2022 euim 2028 euexex 2045 2euex 2047 2euswapdc 2051 2exeu 2052 reu5 2601 reuss2 3303 funcnv3 5121 fnres 5175 fnopabg 5182 brprcneu 5346 dff3im 5497 recmulnqg 7100 uptx 12224 |
Copyright terms: Public domain | W3C validator |