Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moeq3dc | GIF version |
Description: "At most one" property of equality (split into 3 cases). (Contributed by Jim Kingdon, 7-Jul-2018.) |
Ref | Expression |
---|---|
moeq3dc.1 | ⊢ 𝐴 ∈ V |
moeq3dc.2 | ⊢ 𝐵 ∈ V |
moeq3dc.3 | ⊢ 𝐶 ∈ V |
moeq3dc.4 | ⊢ ¬ (𝜑 ∧ 𝜓) |
Ref | Expression |
---|---|
moeq3dc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ∃*𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeq3dc.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | moeq3dc.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | moeq3dc.3 | . . 3 ⊢ 𝐶 ∈ V | |
4 | moeq3dc.4 | . . 3 ⊢ ¬ (𝜑 ∧ 𝜓) | |
5 | 1, 2, 3, 4 | eueq3dc 2904 | . 2 ⊢ (DECID 𝜑 → (DECID 𝜓 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
6 | eumo 2051 | . 2 ⊢ (∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) → ∃*𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) | |
7 | 5, 6 | syl6 33 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ∃*𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 703 DECID wdc 829 ∨ w3o 972 = wceq 1348 ∃!weu 2019 ∃*wmo 2020 ∈ wcel 2141 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |