ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moeq3dc GIF version

Theorem moeq3dc 2906
Description: "At most one" property of equality (split into 3 cases). (Contributed by Jim Kingdon, 7-Jul-2018.)
Hypotheses
Ref Expression
moeq3dc.1 𝐴 ∈ V
moeq3dc.2 𝐵 ∈ V
moeq3dc.3 𝐶 ∈ V
moeq3dc.4 ¬ (𝜑𝜓)
Assertion
Ref Expression
moeq3dc (DECID 𝜑 → (DECID 𝜓 → ∃*𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))))
Distinct variable groups:   𝜑,𝑥   𝜓,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem moeq3dc
StepHypRef Expression
1 moeq3dc.1 . . 3 𝐴 ∈ V
2 moeq3dc.2 . . 3 𝐵 ∈ V
3 moeq3dc.3 . . 3 𝐶 ∈ V
4 moeq3dc.4 . . 3 ¬ (𝜑𝜓)
51, 2, 3, 4eueq3dc 2904 . 2 (DECID 𝜑 → (DECID 𝜓 → ∃!𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))))
6 eumo 2051 . 2 (∃!𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)) → ∃*𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)))
75, 6syl6 33 1 (DECID 𝜑 → (DECID 𝜓 → ∃*𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703  DECID wdc 829  w3o 972   = wceq 1348  ∃!weu 2019  ∃*wmo 2020  wcel 2141  Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator