| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moeq3dc | GIF version | ||
| Description: "At most one" property of equality (split into 3 cases). (Contributed by Jim Kingdon, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| moeq3dc.1 | ⊢ 𝐴 ∈ V |
| moeq3dc.2 | ⊢ 𝐵 ∈ V |
| moeq3dc.3 | ⊢ 𝐶 ∈ V |
| moeq3dc.4 | ⊢ ¬ (𝜑 ∧ 𝜓) |
| Ref | Expression |
|---|---|
| moeq3dc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ∃*𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moeq3dc.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | moeq3dc.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | moeq3dc.3 | . . 3 ⊢ 𝐶 ∈ V | |
| 4 | moeq3dc.4 | . . 3 ⊢ ¬ (𝜑 ∧ 𝜓) | |
| 5 | 1, 2, 3, 4 | eueq3dc 2938 | . 2 ⊢ (DECID 𝜑 → (DECID 𝜓 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
| 6 | eumo 2077 | . 2 ⊢ (∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) → ∃*𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) | |
| 7 | 5, 6 | syl6 33 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ∃*𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 ∨ w3o 979 = wceq 1364 ∃!weu 2045 ∃*wmo 2046 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |