![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > moeq3dc | GIF version |
Description: "At most one" property of equality (split into 3 cases). (Contributed by Jim Kingdon, 7-Jul-2018.) |
Ref | Expression |
---|---|
moeq3dc.1 | ⊢ 𝐴 ∈ V |
moeq3dc.2 | ⊢ 𝐵 ∈ V |
moeq3dc.3 | ⊢ 𝐶 ∈ V |
moeq3dc.4 | ⊢ ¬ (𝜑 ∧ 𝜓) |
Ref | Expression |
---|---|
moeq3dc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ∃*𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeq3dc.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | moeq3dc.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | moeq3dc.3 | . . 3 ⊢ 𝐶 ∈ V | |
4 | moeq3dc.4 | . . 3 ⊢ ¬ (𝜑 ∧ 𝜓) | |
5 | 1, 2, 3, 4 | eueq3dc 2926 | . 2 ⊢ (DECID 𝜑 → (DECID 𝜓 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
6 | eumo 2070 | . 2 ⊢ (∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) → ∃*𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶))) | |
7 | 5, 6 | syl6 33 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ∃*𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 ∨ w3o 979 = wceq 1364 ∃!weu 2038 ∃*wmo 2039 ∈ wcel 2160 Vcvv 2752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-v 2754 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |