Step | Hyp | Ref
| Expression |
1 | | eqid 2177 |
. . . . 5
ā¢ āŖ š =
āŖ š |
2 | | eqid 2177 |
. . . . 5
ā¢ (š„ ā āŖ š
ā¦ āØ(š¹āš„), (šŗāš„)ā©) = (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) |
3 | 1, 2 | txcnmpt 13743 |
. . . 4
ā¢ ((š¹ ā (š Cn š
) ā§ šŗ ā (š Cn š)) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā (š Cn (š
Ćt š))) |
4 | | uptx.1 |
. . . . 5
ā¢ š = (š
Ćt š) |
5 | 4 | oveq2i 5885 |
. . . 4
ā¢ (š Cn š) = (š Cn (š
Ćt š)) |
6 | 3, 5 | eleqtrrdi 2271 |
. . 3
ā¢ ((š¹ ā (š Cn š
) ā§ šŗ ā (š Cn š)) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā (š Cn š)) |
7 | | uptx.2 |
. . . . . 6
ā¢ š = āŖ
š
|
8 | 1, 7 | cnf 13674 |
. . . . 5
ā¢ (š¹ ā (š Cn š
) ā š¹:āŖ šā¶š) |
9 | | uptx.3 |
. . . . . 6
ā¢ š = āŖ
š |
10 | 1, 9 | cnf 13674 |
. . . . 5
ā¢ (šŗ ā (š Cn š) ā šŗ:āŖ šā¶š) |
11 | | ffn 5365 |
. . . . . . . 8
ā¢ (š¹:āŖ
šā¶š ā š¹ Fn āŖ š) |
12 | 11 | adantr 276 |
. . . . . . 7
ā¢ ((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā š¹ Fn āŖ š) |
13 | | fo1st 6157 |
. . . . . . . . . 10
ā¢
1st :VāontoāV |
14 | | fofn 5440 |
. . . . . . . . . 10
ā¢
(1st :VāontoāV ā 1st Fn V) |
15 | 13, 14 | ax-mp 5 |
. . . . . . . . 9
ā¢
1st Fn V |
16 | | ssv 3177 |
. . . . . . . . 9
ā¢ (š Ć š) ā V |
17 | | fnssres 5329 |
. . . . . . . . 9
ā¢
((1st Fn V ā§ (š Ć š) ā V) ā (1st ā¾
(š Ć š)) Fn (š Ć š)) |
18 | 15, 16, 17 | mp2an 426 |
. . . . . . . 8
ā¢
(1st ā¾ (š Ć š)) Fn (š Ć š) |
19 | | ffvelcdm 5649 |
. . . . . . . . . . . 12
ā¢ ((š¹:āŖ
šā¶š ā§ š„ ā āŖ š) ā (š¹āš„) ā š) |
20 | | ffvelcdm 5649 |
. . . . . . . . . . . 12
ā¢ ((šŗ:āŖ
šā¶š ā§ š„ ā āŖ š) ā (šŗāš„) ā š) |
21 | | opelxpi 4658 |
. . . . . . . . . . . 12
ā¢ (((š¹āš„) ā š ā§ (šŗāš„) ā š) ā āØ(š¹āš„), (šŗāš„)ā© ā (š Ć š)) |
22 | 19, 20, 21 | syl2an 289 |
. . . . . . . . . . 11
ā¢ (((š¹:āŖ
šā¶š ā§ š„ ā āŖ š) ā§ (šŗ:āŖ šā¶š ā§ š„ ā āŖ š)) ā āØ(š¹āš„), (šŗāš„)ā© ā (š Ć š)) |
23 | 22 | anandirs 593 |
. . . . . . . . . 10
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š„ ā āŖ š) ā āØ(š¹āš„), (šŗāš„)ā© ā (š Ć š)) |
24 | 23 | fmpttd 5671 |
. . . . . . . . 9
ā¢ ((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©):āŖ šā¶(š Ć š)) |
25 | 24 | ffnd 5366 |
. . . . . . . 8
ā¢ ((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) Fn āŖ
š) |
26 | 24 | frnd 5375 |
. . . . . . . 8
ā¢ ((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā ran (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā (š Ć š)) |
27 | | fnco 5324 |
. . . . . . . 8
ā¢
(((1st ā¾ (š Ć š)) Fn (š Ć š) ā§ (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) Fn āŖ
š ā§ ran (š„ ā āŖ š
ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā (š Ć š)) ā ((1st ā¾ (š Ć š)) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)) Fn āŖ
š) |
28 | 18, 25, 26, 27 | mp3an2i 1342 |
. . . . . . 7
ā¢ ((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā ((1st ā¾ (š Ć š)) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)) Fn āŖ
š) |
29 | | fvco3 5587 |
. . . . . . . . 9
ā¢ (((š„ ā āŖ š
ā¦ āØ(š¹āš„), (šŗāš„)ā©):āŖ šā¶(š Ć š) ā§ š§ ā āŖ š) ā (((1st
ā¾ (š Ć š)) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©))āš§) = ((1st ā¾ (š Ć š))ā((š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)āš§))) |
30 | 24, 29 | sylan 283 |
. . . . . . . 8
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā (((1st
ā¾ (š Ć š)) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©))āš§) = ((1st ā¾ (š Ć š))ā((š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)āš§))) |
31 | | fveq2 5515 |
. . . . . . . . . . 11
ā¢ (š„ = š§ ā (š¹āš„) = (š¹āš§)) |
32 | | fveq2 5515 |
. . . . . . . . . . 11
ā¢ (š„ = š§ ā (šŗāš„) = (šŗāš§)) |
33 | 31, 32 | opeq12d 3786 |
. . . . . . . . . 10
ā¢ (š„ = š§ ā āØ(š¹āš„), (šŗāš„)ā© = āØ(š¹āš§), (šŗāš§)ā©) |
34 | | simpr 110 |
. . . . . . . . . 10
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā š§ ā āŖ š) |
35 | | simpll 527 |
. . . . . . . . . . . 12
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā š¹:āŖ šā¶š) |
36 | 35, 34 | ffvelcdmd 5652 |
. . . . . . . . . . 11
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā (š¹āš§) ā š) |
37 | | simplr 528 |
. . . . . . . . . . . 12
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā šŗ:āŖ šā¶š) |
38 | 37, 34 | ffvelcdmd 5652 |
. . . . . . . . . . 11
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā (šŗāš§) ā š) |
39 | 36, 38 | opelxpd 4659 |
. . . . . . . . . 10
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā āØ(š¹āš§), (šŗāš§)ā© ā (š Ć š)) |
40 | 2, 33, 34, 39 | fvmptd3 5609 |
. . . . . . . . 9
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā ((š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)āš§) = āØ(š¹āš§), (šŗāš§)ā©) |
41 | 40 | fveq2d 5519 |
. . . . . . . 8
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā ((1st
ā¾ (š Ć š))ā((š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)āš§)) = ((1st ā¾ (š Ć š))āāØ(š¹āš§), (šŗāš§)ā©)) |
42 | | ffvelcdm 5649 |
. . . . . . . . . . . 12
ā¢ ((š¹:āŖ
šā¶š ā§ š§ ā āŖ š) ā (š¹āš§) ā š) |
43 | | ffvelcdm 5649 |
. . . . . . . . . . . 12
ā¢ ((šŗ:āŖ
šā¶š ā§ š§ ā āŖ š) ā (šŗāš§) ā š) |
44 | | opelxpi 4658 |
. . . . . . . . . . . 12
ā¢ (((š¹āš§) ā š ā§ (šŗāš§) ā š) ā āØ(š¹āš§), (šŗāš§)ā© ā (š Ć š)) |
45 | 42, 43, 44 | syl2an 289 |
. . . . . . . . . . 11
ā¢ (((š¹:āŖ
šā¶š ā§ š§ ā āŖ š) ā§ (šŗ:āŖ šā¶š ā§ š§ ā āŖ š)) ā āØ(š¹āš§), (šŗāš§)ā© ā (š Ć š)) |
46 | 45 | anandirs 593 |
. . . . . . . . . 10
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā āØ(š¹āš§), (šŗāš§)ā© ā (š Ć š)) |
47 | 46 | fvresd 5540 |
. . . . . . . . 9
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā ((1st
ā¾ (š Ć š))āāØ(š¹āš§), (šŗāš§)ā©) = (1st
āāØ(š¹āš§), (šŗāš§)ā©)) |
48 | | op1stg 6150 |
. . . . . . . . . 10
ā¢ (((š¹āš§) ā š ā§ (šŗāš§) ā š) ā (1st āāØ(š¹āš§), (šŗāš§)ā©) = (š¹āš§)) |
49 | 36, 38, 48 | syl2anc 411 |
. . . . . . . . 9
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā (1st
āāØ(š¹āš§), (šŗāš§)ā©) = (š¹āš§)) |
50 | 47, 49 | eqtrd 2210 |
. . . . . . . 8
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā ((1st
ā¾ (š Ć š))āāØ(š¹āš§), (šŗāš§)ā©) = (š¹āš§)) |
51 | 30, 41, 50 | 3eqtrrd 2215 |
. . . . . . 7
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā (š¹āš§) = (((1st ā¾ (š Ć š)) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©))āš§)) |
52 | 12, 28, 51 | eqfnfvd 5616 |
. . . . . 6
ā¢ ((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā š¹ = ((1st ā¾ (š Ć š)) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©))) |
53 | | uptx.5 |
. . . . . . . 8
ā¢ š = (1st ā¾ š) |
54 | | uptx.4 |
. . . . . . . . 9
ā¢ š = (š Ć š) |
55 | 54 | reseq2i 4904 |
. . . . . . . 8
ā¢
(1st ā¾ š) = (1st ā¾ (š Ć š)) |
56 | 53, 55 | eqtri 2198 |
. . . . . . 7
ā¢ š = (1st ā¾
(š Ć š)) |
57 | 56 | coeq1i 4786 |
. . . . . 6
ā¢ (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)) = ((1st ā¾ (š Ć š)) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)) |
58 | 52, 57 | eqtr4di 2228 |
. . . . 5
ā¢ ((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā š¹ = (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©))) |
59 | 8, 10, 58 | syl2an 289 |
. . . 4
ā¢ ((š¹ ā (š Cn š
) ā§ šŗ ā (š Cn š)) ā š¹ = (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©))) |
60 | | ffn 5365 |
. . . . . . . 8
ā¢ (šŗ:āŖ
šā¶š ā šŗ Fn āŖ š) |
61 | 60 | adantl 277 |
. . . . . . 7
ā¢ ((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā šŗ Fn āŖ š) |
62 | | fo2nd 6158 |
. . . . . . . . . 10
ā¢
2nd :VāontoāV |
63 | | fofn 5440 |
. . . . . . . . . 10
ā¢
(2nd :VāontoāV ā 2nd Fn V) |
64 | 62, 63 | ax-mp 5 |
. . . . . . . . 9
ā¢
2nd Fn V |
65 | | fnssres 5329 |
. . . . . . . . 9
ā¢
((2nd Fn V ā§ (š Ć š) ā V) ā (2nd ā¾
(š Ć š)) Fn (š Ć š)) |
66 | 64, 16, 65 | mp2an 426 |
. . . . . . . 8
ā¢
(2nd ā¾ (š Ć š)) Fn (š Ć š) |
67 | | fnco 5324 |
. . . . . . . 8
ā¢
(((2nd ā¾ (š Ć š)) Fn (š Ć š) ā§ (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) Fn āŖ
š ā§ ran (š„ ā āŖ š
ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā (š Ć š)) ā ((2nd ā¾ (š Ć š)) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)) Fn āŖ
š) |
68 | 66, 25, 26, 67 | mp3an2i 1342 |
. . . . . . 7
ā¢ ((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā ((2nd ā¾ (š Ć š)) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)) Fn āŖ
š) |
69 | | fvco3 5587 |
. . . . . . . . 9
ā¢ (((š„ ā āŖ š
ā¦ āØ(š¹āš„), (šŗāš„)ā©):āŖ šā¶(š Ć š) ā§ š§ ā āŖ š) ā (((2nd
ā¾ (š Ć š)) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©))āš§) = ((2nd ā¾ (š Ć š))ā((š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)āš§))) |
70 | 24, 69 | sylan 283 |
. . . . . . . 8
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā (((2nd
ā¾ (š Ć š)) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©))āš§) = ((2nd ā¾ (š Ć š))ā((š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)āš§))) |
71 | 40 | fveq2d 5519 |
. . . . . . . 8
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā ((2nd
ā¾ (š Ć š))ā((š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)āš§)) = ((2nd ā¾ (š Ć š))āāØ(š¹āš§), (šŗāš§)ā©)) |
72 | 46 | fvresd 5540 |
. . . . . . . . 9
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā ((2nd
ā¾ (š Ć š))āāØ(š¹āš§), (šŗāš§)ā©) = (2nd
āāØ(š¹āš§), (šŗāš§)ā©)) |
73 | | op2ndg 6151 |
. . . . . . . . . 10
ā¢ (((š¹āš§) ā š ā§ (šŗāš§) ā š) ā (2nd āāØ(š¹āš§), (šŗāš§)ā©) = (šŗāš§)) |
74 | 36, 38, 73 | syl2anc 411 |
. . . . . . . . 9
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā (2nd
āāØ(š¹āš§), (šŗāš§)ā©) = (šŗāš§)) |
75 | 72, 74 | eqtrd 2210 |
. . . . . . . 8
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā ((2nd
ā¾ (š Ć š))āāØ(š¹āš§), (šŗāš§)ā©) = (šŗāš§)) |
76 | 70, 71, 75 | 3eqtrrd 2215 |
. . . . . . 7
ā¢ (((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā§ š§ ā āŖ š) ā (šŗāš§) = (((2nd ā¾ (š Ć š)) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©))āš§)) |
77 | 61, 68, 76 | eqfnfvd 5616 |
. . . . . 6
ā¢ ((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā šŗ = ((2nd ā¾ (š Ć š)) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©))) |
78 | | uptx.6 |
. . . . . . . 8
ā¢ š = (2nd ā¾ š) |
79 | 54 | reseq2i 4904 |
. . . . . . . 8
ā¢
(2nd ā¾ š) = (2nd ā¾ (š Ć š)) |
80 | 78, 79 | eqtri 2198 |
. . . . . . 7
ā¢ š = (2nd ā¾
(š Ć š)) |
81 | 80 | coeq1i 4786 |
. . . . . 6
ā¢ (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)) = ((2nd ā¾ (š Ć š)) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)) |
82 | 77, 81 | eqtr4di 2228 |
. . . . 5
ā¢ ((š¹:āŖ
šā¶š ā§ šŗ:āŖ šā¶š) ā šŗ = (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©))) |
83 | 8, 10, 82 | syl2an 289 |
. . . 4
ā¢ ((š¹ ā (š Cn š
) ā§ šŗ ā (š Cn š)) ā šŗ = (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©))) |
84 | 6, 59, 83 | jca32 310 |
. . 3
ā¢ ((š¹ ā (š Cn š
) ā§ šŗ ā (š Cn š)) ā ((š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā (š Cn š) ā§ (š¹ = (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)) ā§ šŗ = (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©))))) |
85 | | eleq1 2240 |
. . . . 5
ā¢ (ā = (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā (ā ā (š Cn š) ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā (š Cn š))) |
86 | | coeq2 4785 |
. . . . . . 7
ā¢ (ā = (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā (š ā ā) = (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©))) |
87 | 86 | eqeq2d 2189 |
. . . . . 6
ā¢ (ā = (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā (š¹ = (š ā ā) ā š¹ = (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)))) |
88 | | coeq2 4785 |
. . . . . . 7
ā¢ (ā = (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā (š ā ā) = (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©))) |
89 | 88 | eqeq2d 2189 |
. . . . . 6
ā¢ (ā = (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā (šŗ = (š ā ā) ā šŗ = (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)))) |
90 | 87, 89 | anbi12d 473 |
. . . . 5
ā¢ (ā = (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā ((š¹ = (š ā ā) ā§ šŗ = (š ā ā)) ā (š¹ = (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)) ā§ šŗ = (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©))))) |
91 | 85, 90 | anbi12d 473 |
. . . 4
ā¢ (ā = (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā ((ā ā (š Cn š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā))) ā ((š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā (š Cn š) ā§ (š¹ = (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)) ā§ šŗ = (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)))))) |
92 | 91 | spcegv 2825 |
. . 3
ā¢ ((š„ ā āŖ š
ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā (š Cn š) ā (((š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©) ā (š Cn š) ā§ (š¹ = (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)) ā§ šŗ = (š ā (š„ ā āŖ š ā¦ āØ(š¹āš„), (šŗāš„)ā©)))) ā āā(ā ā (š Cn š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā))))) |
93 | 6, 84, 92 | sylc 62 |
. 2
ā¢ ((š¹ ā (š Cn š
) ā§ šŗ ā (š Cn š)) ā āā(ā ā (š Cn š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā)))) |
94 | | eqid 2177 |
. . . . . . . 8
ā¢ āŖ š =
āŖ š |
95 | 1, 94 | cnf 13674 |
. . . . . . 7
ā¢ (ā ā (š Cn š) ā ā:āŖ šā¶āŖ š) |
96 | | cntop2 13672 |
. . . . . . . . 9
ā¢ (š¹ ā (š Cn š
) ā š
ā Top) |
97 | | cntop2 13672 |
. . . . . . . . 9
ā¢ (šŗ ā (š Cn š) ā š ā Top) |
98 | 4 | unieqi 3819 |
. . . . . . . . . 10
ā¢ āŖ š =
āŖ (š
Ćt š) |
99 | 7, 9 | txuni 13733 |
. . . . . . . . . 10
ā¢ ((š
ā Top ā§ š ā Top) ā (š Ć š) = āŖ (š
Ćt š)) |
100 | 98, 99 | eqtr4id 2229 |
. . . . . . . . 9
ā¢ ((š
ā Top ā§ š ā Top) ā āŖ š =
(š Ć š)) |
101 | 96, 97, 100 | syl2an 289 |
. . . . . . . 8
ā¢ ((š¹ ā (š Cn š
) ā§ šŗ ā (š Cn š)) ā āŖ š = (š Ć š)) |
102 | 101 | feq3d 5354 |
. . . . . . 7
ā¢ ((š¹ ā (š Cn š
) ā§ šŗ ā (š Cn š)) ā (ā:āŖ šā¶āŖ š
ā ā:āŖ šā¶(š Ć š))) |
103 | 95, 102 | imbitrid 154 |
. . . . . 6
ā¢ ((š¹ ā (š Cn š
) ā§ šŗ ā (š Cn š)) ā (ā ā (š Cn š) ā ā:āŖ šā¶(š Ć š))) |
104 | 103 | anim1d 336 |
. . . . 5
ā¢ ((š¹ ā (š Cn š
) ā§ šŗ ā (š Cn š)) ā ((ā ā (š Cn š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā))) ā (ā:āŖ šā¶(š Ć š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā))))) |
105 | | 3anass 982 |
. . . . 5
ā¢ ((ā:āŖ
šā¶(š Ć š) ā§ š¹ = (š ā ā) ā§ šŗ = (š ā ā)) ā (ā:āŖ šā¶(š Ć š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā)))) |
106 | 104, 105 | imbitrrdi 162 |
. . . 4
ā¢ ((š¹ ā (š Cn š
) ā§ šŗ ā (š Cn š)) ā ((ā ā (š Cn š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā))) ā (ā:āŖ šā¶(š Ć š) ā§ š¹ = (š ā ā) ā§ šŗ = (š ā ā)))) |
107 | 106 | alrimiv 1874 |
. . 3
ā¢ ((š¹ ā (š Cn š
) ā§ šŗ ā (š Cn š)) ā āā((ā ā (š Cn š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā))) ā (ā:āŖ šā¶(š Ć š) ā§ š¹ = (š ā ā) ā§ šŗ = (š ā ā)))) |
108 | | cntop1 13671 |
. . . . . 6
ā¢ (š¹ ā (š Cn š
) ā š ā Top) |
109 | | uniexg 4439 |
. . . . . 6
ā¢ (š ā Top ā āŖ š
ā V) |
110 | 108, 109 | syl 14 |
. . . . 5
ā¢ (š¹ ā (š Cn š
) ā āŖ š ā V) |
111 | 56, 80 | upxp 13742 |
. . . . 5
ā¢ ((āŖ š
ā V ā§ š¹:āŖ šā¶š ā§ šŗ:āŖ šā¶š) ā ā!ā(ā:āŖ šā¶(š Ć š) ā§ š¹ = (š ā ā) ā§ šŗ = (š ā ā))) |
112 | 110, 8, 10, 111 | syl2an3an 1298 |
. . . 4
ā¢ ((š¹ ā (š Cn š
) ā§ šŗ ā (š Cn š)) ā ā!ā(ā:āŖ šā¶(š Ć š) ā§ š¹ = (š ā ā) ā§ šŗ = (š ā ā))) |
113 | | eumo 2058 |
. . . 4
ā¢
(ā!ā(ā:āŖ
šā¶(š Ć š) ā§ š¹ = (š ā ā) ā§ šŗ = (š ā ā)) ā ā*ā(ā:āŖ šā¶(š Ć š) ā§ š¹ = (š ā ā) ā§ šŗ = (š ā ā))) |
114 | 112, 113 | syl 14 |
. . 3
ā¢ ((š¹ ā (š Cn š
) ā§ šŗ ā (š Cn š)) ā ā*ā(ā:āŖ šā¶(š Ć š) ā§ š¹ = (š ā ā) ā§ šŗ = (š ā ā))) |
115 | | moim 2090 |
. . 3
ā¢
(āā((ā ā (š Cn š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā))) ā (ā:āŖ šā¶(š Ć š) ā§ š¹ = (š ā ā) ā§ šŗ = (š ā ā))) ā (ā*ā(ā:āŖ šā¶(š Ć š) ā§ š¹ = (š ā ā) ā§ šŗ = (š ā ā)) ā ā*ā(ā ā (š Cn š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā))))) |
116 | 107, 114,
115 | sylc 62 |
. 2
ā¢ ((š¹ ā (š Cn š
) ā§ šŗ ā (š Cn š)) ā ā*ā(ā ā (š Cn š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā)))) |
117 | | df-reu 2462 |
. . 3
ā¢
(ā!ā ā
(š Cn š)(š¹ = (š ā ā) ā§ šŗ = (š ā ā)) ā ā!ā(ā ā (š Cn š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā)))) |
118 | | eu5 2073 |
. . 3
ā¢
(ā!ā(ā ā (š Cn š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā))) ā (āā(ā ā (š Cn š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā))) ā§ ā*ā(ā ā (š Cn š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā))))) |
119 | 117, 118 | bitri 184 |
. 2
ā¢
(ā!ā ā
(š Cn š)(š¹ = (š ā ā) ā§ šŗ = (š ā ā)) ā (āā(ā ā (š Cn š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā))) ā§ ā*ā(ā ā (š Cn š) ā§ (š¹ = (š ā ā) ā§ šŗ = (š ā ā))))) |
120 | 93, 116, 119 | sylanbrc 417 |
1
ā¢ ((š¹ ā (š Cn š
) ā§ šŗ ā (š Cn š)) ā ā!ā ā (š Cn š)(š¹ = (š ā ā) ā§ šŗ = (š ā ā))) |