| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqid 2196 | 
. . . . 5
⊢ ∪ 𝑈 =
∪ 𝑈 | 
| 2 |   | eqid 2196 | 
. . . . 5
⊢ (𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) | 
| 3 | 1, 2 | txcnmpt 14509 | 
. . . 4
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn (𝑅 ×t 𝑆))) | 
| 4 |   | uptx.1 | 
. . . . 5
⊢ 𝑇 = (𝑅 ×t 𝑆) | 
| 5 | 4 | oveq2i 5933 | 
. . . 4
⊢ (𝑈 Cn 𝑇) = (𝑈 Cn (𝑅 ×t 𝑆)) | 
| 6 | 3, 5 | eleqtrrdi 2290 | 
. . 3
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇)) | 
| 7 |   | uptx.2 | 
. . . . . 6
⊢ 𝑋 = ∪
𝑅 | 
| 8 | 1, 7 | cnf 14440 | 
. . . . 5
⊢ (𝐹 ∈ (𝑈 Cn 𝑅) → 𝐹:∪ 𝑈⟶𝑋) | 
| 9 |   | uptx.3 | 
. . . . . 6
⊢ 𝑌 = ∪
𝑆 | 
| 10 | 1, 9 | cnf 14440 | 
. . . . 5
⊢ (𝐺 ∈ (𝑈 Cn 𝑆) → 𝐺:∪ 𝑈⟶𝑌) | 
| 11 |   | ffn 5407 | 
. . . . . . . 8
⊢ (𝐹:∪
𝑈⟶𝑋 → 𝐹 Fn ∪ 𝑈) | 
| 12 | 11 | adantr 276 | 
. . . . . . 7
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐹 Fn ∪ 𝑈) | 
| 13 |   | fo1st 6215 | 
. . . . . . . . . 10
⊢
1st :V–onto→V | 
| 14 |   | fofn 5482 | 
. . . . . . . . . 10
⊢
(1st :V–onto→V → 1st Fn V) | 
| 15 | 13, 14 | ax-mp 5 | 
. . . . . . . . 9
⊢
1st Fn V | 
| 16 |   | ssv 3205 | 
. . . . . . . . 9
⊢ (𝑋 × 𝑌) ⊆ V | 
| 17 |   | fnssres 5371 | 
. . . . . . . . 9
⊢
((1st Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (1st ↾
(𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) | 
| 18 | 15, 16, 17 | mp2an 426 | 
. . . . . . . 8
⊢
(1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) | 
| 19 |   | ffvelcdm 5695 | 
. . . . . . . . . . . 12
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝑥 ∈ ∪ 𝑈) → (𝐹‘𝑥) ∈ 𝑋) | 
| 20 |   | ffvelcdm 5695 | 
. . . . . . . . . . . 12
⊢ ((𝐺:∪
𝑈⟶𝑌 ∧ 𝑥 ∈ ∪ 𝑈) → (𝐺‘𝑥) ∈ 𝑌) | 
| 21 |   | opelxpi 4695 | 
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) ∈ 𝑋 ∧ (𝐺‘𝑥) ∈ 𝑌) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝑋 × 𝑌)) | 
| 22 | 19, 20, 21 | syl2an 289 | 
. . . . . . . . . . 11
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝑥 ∈ ∪ 𝑈) ∧ (𝐺:∪ 𝑈⟶𝑌 ∧ 𝑥 ∈ ∪ 𝑈)) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝑋 × 𝑌)) | 
| 23 | 22 | anandirs 593 | 
. . . . . . . . . 10
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑥 ∈ ∪ 𝑈) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝑋 × 𝑌)) | 
| 24 | 23 | fmpttd 5717 | 
. . . . . . . . 9
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):∪ 𝑈⟶(𝑋 × 𝑌)) | 
| 25 | 24 | ffnd 5408 | 
. . . . . . . 8
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn ∪
𝑈) | 
| 26 | 24 | frnd 5417 | 
. . . . . . . 8
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → ran (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝑋 × 𝑌)) | 
| 27 |   | fnco 5366 | 
. . . . . . . 8
⊢
(((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn ∪
𝑈 ∧ ran (𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝑋 × 𝑌)) → ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn ∪
𝑈) | 
| 28 | 18, 25, 26, 27 | mp3an2i 1353 | 
. . . . . . 7
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn ∪
𝑈) | 
| 29 |   | fvco3 5632 | 
. . . . . . . . 9
⊢ (((𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (((1st
↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((1st ↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) | 
| 30 | 24, 29 | sylan 283 | 
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (((1st
↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((1st ↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) | 
| 31 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) | 
| 32 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝐺‘𝑥) = (𝐺‘𝑧)) | 
| 33 | 31, 32 | opeq12d 3816 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) | 
| 34 |   | simpr 110 | 
. . . . . . . . . 10
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → 𝑧 ∈ ∪ 𝑈) | 
| 35 |   | simpll 527 | 
. . . . . . . . . . . 12
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → 𝐹:∪ 𝑈⟶𝑋) | 
| 36 | 35, 34 | ffvelcdmd 5698 | 
. . . . . . . . . . 11
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (𝐹‘𝑧) ∈ 𝑋) | 
| 37 |   | simplr 528 | 
. . . . . . . . . . . 12
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → 𝐺:∪ 𝑈⟶𝑌) | 
| 38 | 37, 34 | ffvelcdmd 5698 | 
. . . . . . . . . . 11
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (𝐺‘𝑧) ∈ 𝑌) | 
| 39 | 36, 38 | opelxpd 4696 | 
. . . . . . . . . 10
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝑋 × 𝑌)) | 
| 40 | 2, 33, 34, 39 | fvmptd3 5655 | 
. . . . . . . . 9
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) | 
| 41 | 40 | fveq2d 5562 | 
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((1st
↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧)) = ((1st ↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) | 
| 42 |   | ffvelcdm 5695 | 
. . . . . . . . . . . 12
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝑧 ∈ ∪ 𝑈) → (𝐹‘𝑧) ∈ 𝑋) | 
| 43 |   | ffvelcdm 5695 | 
. . . . . . . . . . . 12
⊢ ((𝐺:∪
𝑈⟶𝑌 ∧ 𝑧 ∈ ∪ 𝑈) → (𝐺‘𝑧) ∈ 𝑌) | 
| 44 |   | opelxpi 4695 | 
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑧) ∈ 𝑋 ∧ (𝐺‘𝑧) ∈ 𝑌) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝑋 × 𝑌)) | 
| 45 | 42, 43, 44 | syl2an 289 | 
. . . . . . . . . . 11
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝑧 ∈ ∪ 𝑈) ∧ (𝐺:∪ 𝑈⟶𝑌 ∧ 𝑧 ∈ ∪ 𝑈)) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝑋 × 𝑌)) | 
| 46 | 45 | anandirs 593 | 
. . . . . . . . . 10
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝑋 × 𝑌)) | 
| 47 | 46 | fvresd 5583 | 
. . . . . . . . 9
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((1st
↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (1st
‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) | 
| 48 |   | op1stg 6208 | 
. . . . . . . . . 10
⊢ (((𝐹‘𝑧) ∈ 𝑋 ∧ (𝐺‘𝑧) ∈ 𝑌) → (1st ‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐹‘𝑧)) | 
| 49 | 36, 38, 48 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (1st
‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐹‘𝑧)) | 
| 50 | 47, 49 | eqtrd 2229 | 
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((1st
↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐹‘𝑧)) | 
| 51 | 30, 41, 50 | 3eqtrrd 2234 | 
. . . . . . 7
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (𝐹‘𝑧) = (((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧)) | 
| 52 | 12, 28, 51 | eqfnfvd 5662 | 
. . . . . 6
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐹 = ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 53 |   | uptx.5 | 
. . . . . . . 8
⊢ 𝑃 = (1st ↾ 𝑍) | 
| 54 |   | uptx.4 | 
. . . . . . . . 9
⊢ 𝑍 = (𝑋 × 𝑌) | 
| 55 | 54 | reseq2i 4943 | 
. . . . . . . 8
⊢
(1st ↾ 𝑍) = (1st ↾ (𝑋 × 𝑌)) | 
| 56 | 53, 55 | eqtri 2217 | 
. . . . . . 7
⊢ 𝑃 = (1st ↾
(𝑋 × 𝑌)) | 
| 57 | 56 | coeq1i 4825 | 
. . . . . 6
⊢ (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) = ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) | 
| 58 | 52, 57 | eqtr4di 2247 | 
. . . . 5
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 59 | 8, 10, 58 | syl2an 289 | 
. . . 4
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 60 |   | ffn 5407 | 
. . . . . . . 8
⊢ (𝐺:∪
𝑈⟶𝑌 → 𝐺 Fn ∪ 𝑈) | 
| 61 | 60 | adantl 277 | 
. . . . . . 7
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐺 Fn ∪ 𝑈) | 
| 62 |   | fo2nd 6216 | 
. . . . . . . . . 10
⊢
2nd :V–onto→V | 
| 63 |   | fofn 5482 | 
. . . . . . . . . 10
⊢
(2nd :V–onto→V → 2nd Fn V) | 
| 64 | 62, 63 | ax-mp 5 | 
. . . . . . . . 9
⊢
2nd Fn V | 
| 65 |   | fnssres 5371 | 
. . . . . . . . 9
⊢
((2nd Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (2nd ↾
(𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) | 
| 66 | 64, 16, 65 | mp2an 426 | 
. . . . . . . 8
⊢
(2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) | 
| 67 |   | fnco 5366 | 
. . . . . . . 8
⊢
(((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn ∪
𝑈 ∧ ran (𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝑋 × 𝑌)) → ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn ∪
𝑈) | 
| 68 | 66, 25, 26, 67 | mp3an2i 1353 | 
. . . . . . 7
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn ∪
𝑈) | 
| 69 |   | fvco3 5632 | 
. . . . . . . . 9
⊢ (((𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (((2nd
↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) | 
| 70 | 24, 69 | sylan 283 | 
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (((2nd
↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) | 
| 71 | 40 | fveq2d 5562 | 
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((2nd
↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧)) = ((2nd ↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) | 
| 72 | 46 | fvresd 5583 | 
. . . . . . . . 9
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((2nd
↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (2nd
‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) | 
| 73 |   | op2ndg 6209 | 
. . . . . . . . . 10
⊢ (((𝐹‘𝑧) ∈ 𝑋 ∧ (𝐺‘𝑧) ∈ 𝑌) → (2nd ‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐺‘𝑧)) | 
| 74 | 36, 38, 73 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (2nd
‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐺‘𝑧)) | 
| 75 | 72, 74 | eqtrd 2229 | 
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((2nd
↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐺‘𝑧)) | 
| 76 | 70, 71, 75 | 3eqtrrd 2234 | 
. . . . . . 7
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (𝐺‘𝑧) = (((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧)) | 
| 77 | 61, 68, 76 | eqfnfvd 5662 | 
. . . . . 6
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐺 = ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 78 |   | uptx.6 | 
. . . . . . . 8
⊢ 𝑄 = (2nd ↾ 𝑍) | 
| 79 | 54 | reseq2i 4943 | 
. . . . . . . 8
⊢
(2nd ↾ 𝑍) = (2nd ↾ (𝑋 × 𝑌)) | 
| 80 | 78, 79 | eqtri 2217 | 
. . . . . . 7
⊢ 𝑄 = (2nd ↾
(𝑋 × 𝑌)) | 
| 81 | 80 | coeq1i 4825 | 
. . . . . 6
⊢ (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) = ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) | 
| 82 | 77, 81 | eqtr4di 2247 | 
. . . . 5
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 83 | 8, 10, 82 | syl2an 289 | 
. . . 4
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 84 | 6, 59, 83 | jca32 310 | 
. . 3
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))))) | 
| 85 |   | eleq1 2259 | 
. . . . 5
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (ℎ ∈ (𝑈 Cn 𝑇) ↔ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇))) | 
| 86 |   | coeq2 4824 | 
. . . . . . 7
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝑃 ∘ ℎ) = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 87 | 86 | eqeq2d 2208 | 
. . . . . 6
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝐹 = (𝑃 ∘ ℎ) ↔ 𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) | 
| 88 |   | coeq2 4824 | 
. . . . . . 7
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝑄 ∘ ℎ) = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) | 
| 89 | 88 | eqeq2d 2208 | 
. . . . . 6
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝐺 = (𝑄 ∘ ℎ) ↔ 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) | 
| 90 | 87, 89 | anbi12d 473 | 
. . . . 5
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → ((𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ (𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))))) | 
| 91 | 85, 90 | anbi12d 473 | 
. . . 4
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → ((ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ↔ ((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))))) | 
| 92 | 91 | spcegv 2852 | 
. . 3
⊢ ((𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇) → (((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) → ∃ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))))) | 
| 93 | 6, 84, 92 | sylc 62 | 
. 2
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) | 
| 94 |   | eqid 2196 | 
. . . . . . . 8
⊢ ∪ 𝑇 =
∪ 𝑇 | 
| 95 | 1, 94 | cnf 14440 | 
. . . . . . 7
⊢ (ℎ ∈ (𝑈 Cn 𝑇) → ℎ:∪ 𝑈⟶∪ 𝑇) | 
| 96 |   | cntop2 14438 | 
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ Top) | 
| 97 |   | cntop2 14438 | 
. . . . . . . . 9
⊢ (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ Top) | 
| 98 | 4 | unieqi 3849 | 
. . . . . . . . . 10
⊢ ∪ 𝑇 =
∪ (𝑅 ×t 𝑆) | 
| 99 | 7, 9 | txuni 14499 | 
. . . . . . . . . 10
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) | 
| 100 | 98, 99 | eqtr4id 2248 | 
. . . . . . . . 9
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∪ 𝑇 =
(𝑋 × 𝑌)) | 
| 101 | 96, 97, 100 | syl2an 289 | 
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∪ 𝑇 = (𝑋 × 𝑌)) | 
| 102 | 101 | feq3d 5396 | 
. . . . . . 7
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (ℎ:∪ 𝑈⟶∪ 𝑇
↔ ℎ:∪ 𝑈⟶(𝑋 × 𝑌))) | 
| 103 | 95, 102 | imbitrid 154 | 
. . . . . 6
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (ℎ ∈ (𝑈 Cn 𝑇) → ℎ:∪ 𝑈⟶(𝑋 × 𝑌))) | 
| 104 | 103 | anim1d 336 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ((ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))))) | 
| 105 |   | 3anass 984 | 
. . . . 5
⊢ ((ℎ:∪
𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ (ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) | 
| 106 | 104, 105 | imbitrrdi 162 | 
. . . 4
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ((ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) | 
| 107 | 106 | alrimiv 1888 | 
. . 3
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀ℎ((ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) | 
| 108 |   | cntop1 14437 | 
. . . . . 6
⊢ (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑈 ∈ Top) | 
| 109 |   | uniexg 4474 | 
. . . . . 6
⊢ (𝑈 ∈ Top → ∪ 𝑈
∈ V) | 
| 110 | 108, 109 | syl 14 | 
. . . . 5
⊢ (𝐹 ∈ (𝑈 Cn 𝑅) → ∪ 𝑈 ∈ V) | 
| 111 | 56, 80 | upxp 14508 | 
. . . . 5
⊢ ((∪ 𝑈
∈ V ∧ 𝐹:∪ 𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → ∃!ℎ(ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) | 
| 112 | 110, 8, 10, 111 | syl2an3an 1309 | 
. . . 4
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃!ℎ(ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) | 
| 113 |   | eumo 2077 | 
. . . 4
⊢
(∃!ℎ(ℎ:∪
𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → ∃*ℎ(ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) | 
| 114 | 112, 113 | syl 14 | 
. . 3
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃*ℎ(ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) | 
| 115 |   | moim 2109 | 
. . 3
⊢
(∀ℎ((ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (∃*ℎ(ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → ∃*ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))))) | 
| 116 | 107, 114,
115 | sylc 62 | 
. 2
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃*ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) | 
| 117 |   | df-reu 2482 | 
. . 3
⊢
(∃!ℎ ∈
(𝑈 Cn 𝑇)(𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ ∃!ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) | 
| 118 |   | eu5 2092 | 
. . 3
⊢
(∃!ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ↔ (∃ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ ∃*ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))))) | 
| 119 | 117, 118 | bitri 184 | 
. 2
⊢
(∃!ℎ ∈
(𝑈 Cn 𝑇)(𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ (∃ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ ∃*ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))))) | 
| 120 | 93, 116, 119 | sylanbrc 417 | 
1
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃!ℎ ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) |