Step | Hyp | Ref
| Expression |
1 | | eqid 2165 |
. . . . 5
⊢ ∪ 𝑈 =
∪ 𝑈 |
2 | | eqid 2165 |
. . . . 5
⊢ (𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) |
3 | 1, 2 | txcnmpt 12913 |
. . . 4
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn (𝑅 ×t 𝑆))) |
4 | | uptx.1 |
. . . . 5
⊢ 𝑇 = (𝑅 ×t 𝑆) |
5 | 4 | oveq2i 5853 |
. . . 4
⊢ (𝑈 Cn 𝑇) = (𝑈 Cn (𝑅 ×t 𝑆)) |
6 | 3, 5 | eleqtrrdi 2260 |
. . 3
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇)) |
7 | | uptx.2 |
. . . . . 6
⊢ 𝑋 = ∪
𝑅 |
8 | 1, 7 | cnf 12844 |
. . . . 5
⊢ (𝐹 ∈ (𝑈 Cn 𝑅) → 𝐹:∪ 𝑈⟶𝑋) |
9 | | uptx.3 |
. . . . . 6
⊢ 𝑌 = ∪
𝑆 |
10 | 1, 9 | cnf 12844 |
. . . . 5
⊢ (𝐺 ∈ (𝑈 Cn 𝑆) → 𝐺:∪ 𝑈⟶𝑌) |
11 | | ffn 5337 |
. . . . . . . 8
⊢ (𝐹:∪
𝑈⟶𝑋 → 𝐹 Fn ∪ 𝑈) |
12 | 11 | adantr 274 |
. . . . . . 7
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐹 Fn ∪ 𝑈) |
13 | | fo1st 6125 |
. . . . . . . . . 10
⊢
1st :V–onto→V |
14 | | fofn 5412 |
. . . . . . . . . 10
⊢
(1st :V–onto→V → 1st Fn V) |
15 | 13, 14 | ax-mp 5 |
. . . . . . . . 9
⊢
1st Fn V |
16 | | ssv 3164 |
. . . . . . . . 9
⊢ (𝑋 × 𝑌) ⊆ V |
17 | | fnssres 5301 |
. . . . . . . . 9
⊢
((1st Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (1st ↾
(𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) |
18 | 15, 16, 17 | mp2an 423 |
. . . . . . . 8
⊢
(1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) |
19 | | ffvelrn 5618 |
. . . . . . . . . . . 12
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝑥 ∈ ∪ 𝑈) → (𝐹‘𝑥) ∈ 𝑋) |
20 | | ffvelrn 5618 |
. . . . . . . . . . . 12
⊢ ((𝐺:∪
𝑈⟶𝑌 ∧ 𝑥 ∈ ∪ 𝑈) → (𝐺‘𝑥) ∈ 𝑌) |
21 | | opelxpi 4636 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) ∈ 𝑋 ∧ (𝐺‘𝑥) ∈ 𝑌) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝑋 × 𝑌)) |
22 | 19, 20, 21 | syl2an 287 |
. . . . . . . . . . 11
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝑥 ∈ ∪ 𝑈) ∧ (𝐺:∪ 𝑈⟶𝑌 ∧ 𝑥 ∈ ∪ 𝑈)) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝑋 × 𝑌)) |
23 | 22 | anandirs 583 |
. . . . . . . . . 10
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑥 ∈ ∪ 𝑈) → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 ∈ (𝑋 × 𝑌)) |
24 | 23 | fmpttd 5640 |
. . . . . . . . 9
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):∪ 𝑈⟶(𝑋 × 𝑌)) |
25 | 24 | ffnd 5338 |
. . . . . . . 8
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn ∪
𝑈) |
26 | 24 | frnd 5347 |
. . . . . . . 8
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → ran (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝑋 × 𝑌)) |
27 | | fnco 5296 |
. . . . . . . 8
⊢
(((1st ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn ∪
𝑈 ∧ ran (𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝑋 × 𝑌)) → ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn ∪
𝑈) |
28 | 18, 25, 26, 27 | mp3an2i 1332 |
. . . . . . 7
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn ∪
𝑈) |
29 | | fvco3 5557 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (((1st
↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((1st ↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) |
30 | 24, 29 | sylan 281 |
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (((1st
↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((1st ↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) |
31 | | fveq2 5486 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
32 | | fveq2 5486 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝐺‘𝑥) = (𝐺‘𝑧)) |
33 | 31, 32 | opeq12d 3766 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → 〈(𝐹‘𝑥), (𝐺‘𝑥)〉 = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) |
34 | | simpr 109 |
. . . . . . . . . 10
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → 𝑧 ∈ ∪ 𝑈) |
35 | | simpll 519 |
. . . . . . . . . . . 12
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → 𝐹:∪ 𝑈⟶𝑋) |
36 | 35, 34 | ffvelrnd 5621 |
. . . . . . . . . . 11
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (𝐹‘𝑧) ∈ 𝑋) |
37 | | simplr 520 |
. . . . . . . . . . . 12
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → 𝐺:∪ 𝑈⟶𝑌) |
38 | 37, 34 | ffvelrnd 5621 |
. . . . . . . . . . 11
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (𝐺‘𝑧) ∈ 𝑌) |
39 | 36, 38 | opelxpd 4637 |
. . . . . . . . . 10
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝑋 × 𝑌)) |
40 | 2, 33, 34, 39 | fvmptd3 5579 |
. . . . . . . . 9
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧) = 〈(𝐹‘𝑧), (𝐺‘𝑧)〉) |
41 | 40 | fveq2d 5490 |
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((1st
↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧)) = ((1st ↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) |
42 | | ffvelrn 5618 |
. . . . . . . . . . . 12
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝑧 ∈ ∪ 𝑈) → (𝐹‘𝑧) ∈ 𝑋) |
43 | | ffvelrn 5618 |
. . . . . . . . . . . 12
⊢ ((𝐺:∪
𝑈⟶𝑌 ∧ 𝑧 ∈ ∪ 𝑈) → (𝐺‘𝑧) ∈ 𝑌) |
44 | | opelxpi 4636 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑧) ∈ 𝑋 ∧ (𝐺‘𝑧) ∈ 𝑌) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝑋 × 𝑌)) |
45 | 42, 43, 44 | syl2an 287 |
. . . . . . . . . . 11
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝑧 ∈ ∪ 𝑈) ∧ (𝐺:∪ 𝑈⟶𝑌 ∧ 𝑧 ∈ ∪ 𝑈)) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝑋 × 𝑌)) |
46 | 45 | anandirs 583 |
. . . . . . . . . 10
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → 〈(𝐹‘𝑧), (𝐺‘𝑧)〉 ∈ (𝑋 × 𝑌)) |
47 | 46 | fvresd 5511 |
. . . . . . . . 9
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((1st
↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (1st
‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) |
48 | | op1stg 6118 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑧) ∈ 𝑋 ∧ (𝐺‘𝑧) ∈ 𝑌) → (1st ‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐹‘𝑧)) |
49 | 36, 38, 48 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (1st
‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐹‘𝑧)) |
50 | 47, 49 | eqtrd 2198 |
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((1st
↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐹‘𝑧)) |
51 | 30, 41, 50 | 3eqtrrd 2203 |
. . . . . . 7
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (𝐹‘𝑧) = (((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧)) |
52 | 12, 28, 51 | eqfnfvd 5586 |
. . . . . 6
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐹 = ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
53 | | uptx.5 |
. . . . . . . 8
⊢ 𝑃 = (1st ↾ 𝑍) |
54 | | uptx.4 |
. . . . . . . . 9
⊢ 𝑍 = (𝑋 × 𝑌) |
55 | 54 | reseq2i 4881 |
. . . . . . . 8
⊢
(1st ↾ 𝑍) = (1st ↾ (𝑋 × 𝑌)) |
56 | 53, 55 | eqtri 2186 |
. . . . . . 7
⊢ 𝑃 = (1st ↾
(𝑋 × 𝑌)) |
57 | 56 | coeq1i 4763 |
. . . . . 6
⊢ (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) = ((1st ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
58 | 52, 57 | eqtr4di 2217 |
. . . . 5
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
59 | 8, 10, 58 | syl2an 287 |
. . . 4
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
60 | | ffn 5337 |
. . . . . . . 8
⊢ (𝐺:∪
𝑈⟶𝑌 → 𝐺 Fn ∪ 𝑈) |
61 | 60 | adantl 275 |
. . . . . . 7
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐺 Fn ∪ 𝑈) |
62 | | fo2nd 6126 |
. . . . . . . . . 10
⊢
2nd :V–onto→V |
63 | | fofn 5412 |
. . . . . . . . . 10
⊢
(2nd :V–onto→V → 2nd Fn V) |
64 | 62, 63 | ax-mp 5 |
. . . . . . . . 9
⊢
2nd Fn V |
65 | | fnssres 5301 |
. . . . . . . . 9
⊢
((2nd Fn V ∧ (𝑋 × 𝑌) ⊆ V) → (2nd ↾
(𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) |
66 | 64, 16, 65 | mp2an 423 |
. . . . . . . 8
⊢
(2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) |
67 | | fnco 5296 |
. . . . . . . 8
⊢
(((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) Fn ∪
𝑈 ∧ ran (𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⊆ (𝑋 × 𝑌)) → ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn ∪
𝑈) |
68 | 66, 25, 26, 67 | mp3an2i 1332 |
. . . . . . 7
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) Fn ∪
𝑈) |
69 | | fvco3 5557 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉):∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (((2nd
↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) |
70 | 24, 69 | sylan 281 |
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (((2nd
↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧) = ((2nd ↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧))) |
71 | 40 | fveq2d 5490 |
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((2nd
↾ (𝑋 × 𝑌))‘((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)‘𝑧)) = ((2nd ↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) |
72 | 46 | fvresd 5511 |
. . . . . . . . 9
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((2nd
↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (2nd
‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉)) |
73 | | op2ndg 6119 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑧) ∈ 𝑋 ∧ (𝐺‘𝑧) ∈ 𝑌) → (2nd ‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐺‘𝑧)) |
74 | 36, 38, 73 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (2nd
‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐺‘𝑧)) |
75 | 72, 74 | eqtrd 2198 |
. . . . . . . 8
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → ((2nd
↾ (𝑋 × 𝑌))‘〈(𝐹‘𝑧), (𝐺‘𝑧)〉) = (𝐺‘𝑧)) |
76 | 70, 71, 75 | 3eqtrrd 2203 |
. . . . . . 7
⊢ (((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) ∧ 𝑧 ∈ ∪ 𝑈) → (𝐺‘𝑧) = (((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))‘𝑧)) |
77 | 61, 68, 76 | eqfnfvd 5586 |
. . . . . 6
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐺 = ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
78 | | uptx.6 |
. . . . . . . 8
⊢ 𝑄 = (2nd ↾ 𝑍) |
79 | 54 | reseq2i 4881 |
. . . . . . . 8
⊢
(2nd ↾ 𝑍) = (2nd ↾ (𝑋 × 𝑌)) |
80 | 78, 79 | eqtri 2186 |
. . . . . . 7
⊢ 𝑄 = (2nd ↾
(𝑋 × 𝑌)) |
81 | 80 | coeq1i 4763 |
. . . . . 6
⊢ (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) = ((2nd ↾ (𝑋 × 𝑌)) ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) |
82 | 77, 81 | eqtr4di 2217 |
. . . . 5
⊢ ((𝐹:∪
𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
83 | 8, 10, 82 | syl2an 287 |
. . . 4
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
84 | 6, 59, 83 | jca32 308 |
. . 3
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))))) |
85 | | eleq1 2229 |
. . . . 5
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (ℎ ∈ (𝑈 Cn 𝑇) ↔ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇))) |
86 | | coeq2 4762 |
. . . . . . 7
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝑃 ∘ ℎ) = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
87 | 86 | eqeq2d 2177 |
. . . . . 6
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝐹 = (𝑃 ∘ ℎ) ↔ 𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) |
88 | | coeq2 4762 |
. . . . . . 7
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝑄 ∘ ℎ) = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))) |
89 | 88 | eqeq2d 2177 |
. . . . . 6
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → (𝐺 = (𝑄 ∘ ℎ) ↔ 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) |
90 | 87, 89 | anbi12d 465 |
. . . . 5
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → ((𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ (𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉))))) |
91 | 85, 90 | anbi12d 465 |
. . . 4
⊢ (ℎ = (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) → ((ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ↔ ((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))))) |
92 | 91 | spcegv 2814 |
. . 3
⊢ ((𝑥 ∈ ∪ 𝑈
↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇) → (((𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)) ∧ 𝐺 = (𝑄 ∘ (𝑥 ∈ ∪ 𝑈 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉)))) → ∃ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))))) |
93 | 6, 84, 92 | sylc 62 |
. 2
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) |
94 | | eqid 2165 |
. . . . . . . 8
⊢ ∪ 𝑇 =
∪ 𝑇 |
95 | 1, 94 | cnf 12844 |
. . . . . . 7
⊢ (ℎ ∈ (𝑈 Cn 𝑇) → ℎ:∪ 𝑈⟶∪ 𝑇) |
96 | | cntop2 12842 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ Top) |
97 | | cntop2 12842 |
. . . . . . . . 9
⊢ (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ Top) |
98 | 4 | unieqi 3799 |
. . . . . . . . . 10
⊢ ∪ 𝑇 =
∪ (𝑅 ×t 𝑆) |
99 | 7, 9 | txuni 12903 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
100 | 98, 99 | eqtr4id 2218 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∪ 𝑇 =
(𝑋 × 𝑌)) |
101 | 96, 97, 100 | syl2an 287 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∪ 𝑇 = (𝑋 × 𝑌)) |
102 | 101 | feq3d 5326 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (ℎ:∪ 𝑈⟶∪ 𝑇
↔ ℎ:∪ 𝑈⟶(𝑋 × 𝑌))) |
103 | 95, 102 | syl5ib 153 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (ℎ ∈ (𝑈 Cn 𝑇) → ℎ:∪ 𝑈⟶(𝑋 × 𝑌))) |
104 | 103 | anim1d 334 |
. . . . 5
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ((ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))))) |
105 | | 3anass 972 |
. . . . 5
⊢ ((ℎ:∪
𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ (ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) |
106 | 104, 105 | syl6ibr 161 |
. . . 4
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ((ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) |
107 | 106 | alrimiv 1862 |
. . 3
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀ℎ((ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) |
108 | | cntop1 12841 |
. . . . . 6
⊢ (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑈 ∈ Top) |
109 | | uniexg 4417 |
. . . . . 6
⊢ (𝑈 ∈ Top → ∪ 𝑈
∈ V) |
110 | 108, 109 | syl 14 |
. . . . 5
⊢ (𝐹 ∈ (𝑈 Cn 𝑅) → ∪ 𝑈 ∈ V) |
111 | 56, 80 | upxp 12912 |
. . . . 5
⊢ ((∪ 𝑈
∈ V ∧ 𝐹:∪ 𝑈⟶𝑋 ∧ 𝐺:∪ 𝑈⟶𝑌) → ∃!ℎ(ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) |
112 | 110, 8, 10, 111 | syl2an3an 1288 |
. . . 4
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃!ℎ(ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) |
113 | | eumo 2046 |
. . . 4
⊢
(∃!ℎ(ℎ:∪
𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → ∃*ℎ(ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) |
114 | 112, 113 | syl 14 |
. . 3
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃*ℎ(ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) |
115 | | moim 2078 |
. . 3
⊢
(∀ℎ((ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) → (∃*ℎ(ℎ:∪ 𝑈⟶(𝑋 × 𝑌) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) → ∃*ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))))) |
116 | 107, 114,
115 | sylc 62 |
. 2
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃*ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) |
117 | | df-reu 2451 |
. . 3
⊢
(∃!ℎ ∈
(𝑈 Cn 𝑇)(𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ ∃!ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)))) |
118 | | eu5 2061 |
. . 3
⊢
(∃!ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ↔ (∃ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ ∃*ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))))) |
119 | 117, 118 | bitri 183 |
. 2
⊢
(∃!ℎ ∈
(𝑈 Cn 𝑇)(𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ)) ↔ (∃ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) ∧ ∃*ℎ(ℎ ∈ (𝑈 Cn 𝑇) ∧ (𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))))) |
120 | 93, 116, 119 | sylanbrc 414 |
1
⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃!ℎ ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) |