ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eumo GIF version

Theorem 2eumo 2143
Description: Double quantification with existential uniqueness and "at most one." (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eumo (∃!𝑥∃*𝑦𝜑 → ∃*𝑥∃!𝑦𝜑)

Proof of Theorem 2eumo
StepHypRef Expression
1 euimmo 2122 . 2 (∀𝑥(∃!𝑦𝜑 → ∃*𝑦𝜑) → (∃!𝑥∃*𝑦𝜑 → ∃*𝑥∃!𝑦𝜑))
2 eumo 2087 . 2 (∃!𝑦𝜑 → ∃*𝑦𝜑)
31, 2mpg 1475 1 (∃!𝑥∃*𝑦𝜑 → ∃*𝑥∃!𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  ∃!weu 2055  ∃*wmo 2056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator