ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eumo GIF version

Theorem 2eumo 2107
Description: Double quantification with existential uniqueness and "at most one." (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eumo (∃!𝑥∃*𝑦𝜑 → ∃*𝑥∃!𝑦𝜑)

Proof of Theorem 2eumo
StepHypRef Expression
1 euimmo 2086 . 2 (∀𝑥(∃!𝑦𝜑 → ∃*𝑦𝜑) → (∃!𝑥∃*𝑦𝜑 → ∃*𝑥∃!𝑦𝜑))
2 eumo 2051 . 2 (∃!𝑦𝜑 → ∃*𝑦𝜑)
31, 2mpg 1444 1 (∃!𝑥∃*𝑦𝜑 → ∃*𝑥∃!𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  ∃!weu 2019  ∃*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator