ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunsn GIF version

Theorem nfunsn 5611
Description: If the restriction of a class to a singleton is not a function, its value is the empty set. (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nfunsn (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)

Proof of Theorem nfunsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eumo 2086 . . . . . . 7 (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝐴𝐹𝑦)
2 vex 2775 . . . . . . . . . 10 𝑦 ∈ V
32brres 4965 . . . . . . . . 9 (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥𝐹𝑦𝑥 ∈ {𝐴}))
4 velsn 3650 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
5 breq1 4047 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
64, 5sylbi 121 . . . . . . . . . 10 (𝑥 ∈ {𝐴} → (𝑥𝐹𝑦𝐴𝐹𝑦))
76biimpac 298 . . . . . . . . 9 ((𝑥𝐹𝑦𝑥 ∈ {𝐴}) → 𝐴𝐹𝑦)
83, 7sylbi 121 . . . . . . . 8 (𝑥(𝐹 ↾ {𝐴})𝑦𝐴𝐹𝑦)
98moimi 2119 . . . . . . 7 (∃*𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
101, 9syl 14 . . . . . 6 (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
1110alrimiv 1897 . . . . 5 (∃!𝑦 𝐴𝐹𝑦 → ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
12 relres 4987 . . . . 5 Rel (𝐹 ↾ {𝐴})
1311, 12jctil 312 . . . 4 (∃!𝑦 𝐴𝐹𝑦 → (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦))
14 dffun6 5285 . . . 4 (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦))
1513, 14sylibr 134 . . 3 (∃!𝑦 𝐴𝐹𝑦 → Fun (𝐹 ↾ {𝐴}))
1615con3i 633 . 2 (¬ Fun (𝐹 ↾ {𝐴}) → ¬ ∃!𝑦 𝐴𝐹𝑦)
17 tz6.12-2 5567 . 2 (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹𝐴) = ∅)
1816, 17syl 14 1 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  ∃!weu 2054  ∃*wmo 2055  wcel 2176  c0 3460  {csn 3633   class class class wbr 4044  cres 4677  Rel wrel 4680  Fun wfun 5265  cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-res 4687  df-iota 5232  df-fun 5273  df-fv 5279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator