| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfunsn | GIF version | ||
| Description: If the restriction of a class to a singleton is not a function, its value is the empty set. (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nfunsn | ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eumo 2087 | . . . . . . 7 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝐴𝐹𝑦) | |
| 2 | vex 2779 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 3 | 2 | brres 4984 | . . . . . . . . 9 ⊢ (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥𝐹𝑦 ∧ 𝑥 ∈ {𝐴})) |
| 4 | velsn 3660 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 5 | breq1 4062 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
| 6 | 4, 5 | sylbi 121 | . . . . . . . . . 10 ⊢ (𝑥 ∈ {𝐴} → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) |
| 7 | 6 | biimpac 298 | . . . . . . . . 9 ⊢ ((𝑥𝐹𝑦 ∧ 𝑥 ∈ {𝐴}) → 𝐴𝐹𝑦) |
| 8 | 3, 7 | sylbi 121 | . . . . . . . 8 ⊢ (𝑥(𝐹 ↾ {𝐴})𝑦 → 𝐴𝐹𝑦) |
| 9 | 8 | moimi 2121 | . . . . . . 7 ⊢ (∃*𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
| 10 | 1, 9 | syl 14 | . . . . . 6 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
| 11 | 10 | alrimiv 1898 | . . . . 5 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
| 12 | relres 5006 | . . . . 5 ⊢ Rel (𝐹 ↾ {𝐴}) | |
| 13 | 11, 12 | jctil 312 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) |
| 14 | dffun6 5304 | . . . 4 ⊢ (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) | |
| 15 | 13, 14 | sylibr 134 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → Fun (𝐹 ↾ {𝐴})) |
| 16 | 15 | con3i 633 | . 2 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → ¬ ∃!𝑦 𝐴𝐹𝑦) |
| 17 | tz6.12-2 5590 | . 2 ⊢ (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹‘𝐴) = ∅) | |
| 18 | 16, 17 | syl 14 | 1 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 = wceq 1373 ∃!weu 2055 ∃*wmo 2056 ∈ wcel 2178 ∅c0 3468 {csn 3643 class class class wbr 4059 ↾ cres 4695 Rel wrel 4698 Fun wfun 5284 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-res 4705 df-iota 5251 df-fun 5292 df-fv 5298 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |