ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunsn GIF version

Theorem nfunsn 5663
Description: If the restriction of a class to a singleton is not a function, its value is the empty set. (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nfunsn (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)

Proof of Theorem nfunsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eumo 2109 . . . . . . 7 (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝐴𝐹𝑦)
2 vex 2802 . . . . . . . . . 10 𝑦 ∈ V
32brres 5010 . . . . . . . . 9 (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥𝐹𝑦𝑥 ∈ {𝐴}))
4 velsn 3683 . . . . . . . . . . 11 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
5 breq1 4085 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
64, 5sylbi 121 . . . . . . . . . 10 (𝑥 ∈ {𝐴} → (𝑥𝐹𝑦𝐴𝐹𝑦))
76biimpac 298 . . . . . . . . 9 ((𝑥𝐹𝑦𝑥 ∈ {𝐴}) → 𝐴𝐹𝑦)
83, 7sylbi 121 . . . . . . . 8 (𝑥(𝐹 ↾ {𝐴})𝑦𝐴𝐹𝑦)
98moimi 2143 . . . . . . 7 (∃*𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
101, 9syl 14 . . . . . 6 (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
1110alrimiv 1920 . . . . 5 (∃!𝑦 𝐴𝐹𝑦 → ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)
12 relres 5032 . . . . 5 Rel (𝐹 ↾ {𝐴})
1311, 12jctil 312 . . . 4 (∃!𝑦 𝐴𝐹𝑦 → (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦))
14 dffun6 5331 . . . 4 (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦))
1513, 14sylibr 134 . . 3 (∃!𝑦 𝐴𝐹𝑦 → Fun (𝐹 ↾ {𝐴}))
1615con3i 635 . 2 (¬ Fun (𝐹 ↾ {𝐴}) → ¬ ∃!𝑦 𝐴𝐹𝑦)
17 tz6.12-2 5617 . 2 (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹𝐴) = ∅)
1816, 17syl 14 1 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wal 1393   = wceq 1395  ∃!weu 2077  ∃*wmo 2078  wcel 2200  c0 3491  {csn 3666   class class class wbr 4082  cres 4720  Rel wrel 4723  Fun wfun 5311  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-res 4730  df-iota 5277  df-fun 5319  df-fv 5325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator