Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfunsn | GIF version |
Description: If the restriction of a class to a singleton is not a function, its value is the empty set. (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nfunsn | ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2051 | . . . . . . 7 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝐴𝐹𝑦) | |
2 | vex 2733 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
3 | 2 | brres 4897 | . . . . . . . . 9 ⊢ (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥𝐹𝑦 ∧ 𝑥 ∈ {𝐴})) |
4 | velsn 3600 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
5 | breq1 3992 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
6 | 4, 5 | sylbi 120 | . . . . . . . . . 10 ⊢ (𝑥 ∈ {𝐴} → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) |
7 | 6 | biimpac 296 | . . . . . . . . 9 ⊢ ((𝑥𝐹𝑦 ∧ 𝑥 ∈ {𝐴}) → 𝐴𝐹𝑦) |
8 | 3, 7 | sylbi 120 | . . . . . . . 8 ⊢ (𝑥(𝐹 ↾ {𝐴})𝑦 → 𝐴𝐹𝑦) |
9 | 8 | moimi 2084 | . . . . . . 7 ⊢ (∃*𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
10 | 1, 9 | syl 14 | . . . . . 6 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
11 | 10 | alrimiv 1867 | . . . . 5 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
12 | relres 4919 | . . . . 5 ⊢ Rel (𝐹 ↾ {𝐴}) | |
13 | 11, 12 | jctil 310 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) |
14 | dffun6 5212 | . . . 4 ⊢ (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) | |
15 | 13, 14 | sylibr 133 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → Fun (𝐹 ↾ {𝐴})) |
16 | 15 | con3i 627 | . 2 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → ¬ ∃!𝑦 𝐴𝐹𝑦) |
17 | tz6.12-2 5487 | . 2 ⊢ (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹‘𝐴) = ∅) | |
18 | 16, 17 | syl 14 | 1 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1346 = wceq 1348 ∃!weu 2019 ∃*wmo 2020 ∈ wcel 2141 ∅c0 3414 {csn 3583 class class class wbr 3989 ↾ cres 4613 Rel wrel 4616 Fun wfun 5192 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |