![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfunsn | GIF version |
Description: If the restriction of a class to a singleton is not a function, its value is the empty set. (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nfunsn | ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2058 | . . . . . . 7 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝐴𝐹𝑦) | |
2 | vex 2742 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
3 | 2 | brres 4915 | . . . . . . . . 9 ⊢ (𝑥(𝐹 ↾ {𝐴})𝑦 ↔ (𝑥𝐹𝑦 ∧ 𝑥 ∈ {𝐴})) |
4 | velsn 3611 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
5 | breq1 4008 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
6 | 4, 5 | sylbi 121 | . . . . . . . . . 10 ⊢ (𝑥 ∈ {𝐴} → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) |
7 | 6 | biimpac 298 | . . . . . . . . 9 ⊢ ((𝑥𝐹𝑦 ∧ 𝑥 ∈ {𝐴}) → 𝐴𝐹𝑦) |
8 | 3, 7 | sylbi 121 | . . . . . . . 8 ⊢ (𝑥(𝐹 ↾ {𝐴})𝑦 → 𝐴𝐹𝑦) |
9 | 8 | moimi 2091 | . . . . . . 7 ⊢ (∃*𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
10 | 1, 9 | syl 14 | . . . . . 6 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
11 | 10 | alrimiv 1874 | . . . . 5 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦) |
12 | relres 4937 | . . . . 5 ⊢ Rel (𝐹 ↾ {𝐴}) | |
13 | 11, 12 | jctil 312 | . . . 4 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) |
14 | dffun6 5232 | . . . 4 ⊢ (Fun (𝐹 ↾ {𝐴}) ↔ (Rel (𝐹 ↾ {𝐴}) ∧ ∀𝑥∃*𝑦 𝑥(𝐹 ↾ {𝐴})𝑦)) | |
15 | 13, 14 | sylibr 134 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → Fun (𝐹 ↾ {𝐴})) |
16 | 15 | con3i 632 | . 2 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → ¬ ∃!𝑦 𝐴𝐹𝑦) |
17 | tz6.12-2 5508 | . 2 ⊢ (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹‘𝐴) = ∅) | |
18 | 16, 17 | syl 14 | 1 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 = wceq 1353 ∃!weu 2026 ∃*wmo 2027 ∈ wcel 2148 ∅c0 3424 {csn 3594 class class class wbr 4005 ↾ cres 4630 Rel wrel 4633 Fun wfun 5212 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-res 4640 df-iota 5180 df-fun 5220 df-fv 5226 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |