ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euimmo GIF version

Theorem euimmo 2081
Description: Uniqueness implies "at most one" through implication. (Contributed by NM, 22-Apr-1995.)
Assertion
Ref Expression
euimmo (∀𝑥(𝜑𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑))

Proof of Theorem euimmo
StepHypRef Expression
1 eumo 2046 . 2 (∃!𝑥𝜓 → ∃*𝑥𝜓)
2 moim 2078 . 2 (∀𝑥(𝜑𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑))
31, 2syl5 32 1 (∀𝑥(𝜑𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  ∃!weu 2014  ∃*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by:  euim  2082  2eumo  2102  reuss2  3402
  Copyright terms: Public domain W3C validator