![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eupick | GIF version |
Description: Existential uniqueness "picks" a variable value for which another wff is true. If there is only one thing 𝑥 such that 𝜑 is true, and there is also an 𝑥 (actually the same one) such that 𝜑 and 𝜓 are both true, then 𝜑 implies 𝜓 regardless of 𝑥. This theorem can be useful for eliminating existential quantifiers in a hypothesis. Compare Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
eupick | ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 1980 | . 2 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
2 | mopick 2026 | . 2 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | |
3 | 1, 2 | sylan 277 | 1 ⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∃wex 1426 ∃!weu 1948 ∃*wmo 1949 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 |
This theorem is referenced by: eupicka 2028 eupickb 2029 reupick 3283 reupick3 3284 copsexg 4071 eusv2nf 4278 funssres 5056 oprabid 5681 |
Copyright terms: Public domain | W3C validator |