Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupick GIF version

Theorem eupick 2078
 Description: Existential uniqueness "picks" a variable value for which another wff is true. If there is only one thing 𝑥 such that 𝜑 is true, and there is also an 𝑥 (actually the same one) such that 𝜑 and 𝜓 are both true, then 𝜑 implies 𝜓 regardless of 𝑥. This theorem can be useful for eliminating existential quantifiers in a hypothesis. Compare Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by NM, 10-Jul-1994.)
Assertion
Ref Expression
eupick ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))

Proof of Theorem eupick
StepHypRef Expression
1 eumo 2031 . 2 (∃!𝑥𝜑 → ∃*𝑥𝜑)
2 mopick 2077 . 2 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
31, 2sylan 281 1 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103  ∃wex 1468  ∃!weu 1999  ∃*wmo 2000 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515 This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003 This theorem is referenced by:  eupicka  2079  eupickb  2080  reupick  3360  reupick3  3361  copsexg  4166  eusv2nf  4377  funssres  5165  oprabid  5803  txcn  12454
 Copyright terms: Public domain W3C validator