![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exbidv | GIF version |
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
exbidv | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1526 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | exbidh 1614 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ax11ev 1828 2exbidv 1868 3exbidv 1869 eubidh 2032 eubid 2033 eleq1w 2238 eleq2w 2239 eleq1 2240 eleq2 2241 rexbidv2 2480 ceqsex2 2777 alexeq 2863 ceqex 2864 sbc5 2986 sbcex2 3016 sbcexg 3017 sbcabel 3044 eluni 3812 csbunig 3817 intab 3873 cbvopab1 4076 cbvopab1s 4078 axsep2 4122 zfauscl 4123 bnd2 4173 mss 4226 opeqex 4249 euotd 4254 snnex 4448 uniuni 4451 regexmid 4534 reg2exmid 4535 onintexmid 4572 reg3exmid 4579 nnregexmid 4620 opeliunxp 4681 csbxpg 4707 brcog 4794 elrn2g 4817 dfdmf 4820 csbdmg 4821 eldmg 4822 dfrnf 4868 elrn2 4869 elrnmpt1 4878 brcodir 5016 xp11m 5067 xpimasn 5077 csbrng 5090 elxp4 5116 elxp5 5117 dfco2a 5129 cores 5132 funimaexglem 5299 brprcneu 5508 ssimaexg 5578 dmfco 5584 fndmdif 5621 fmptco 5682 fliftf 5799 acexmidlem2 5871 acexmidlemv 5872 cbvoprab1 5946 cbvoprab2 5947 oprssdmm 6171 dmtpos 6256 tfrlemi1 6332 tfr1onlemaccex 6348 tfrcllemaccex 6361 ecdmn0m 6576 ereldm 6577 elqsn0m 6602 mapsn 6689 bren 6746 brdomg 6747 domeng 6751 ac6sfi 6897 ordiso 7034 ctssdclemr 7110 enumct 7113 ctssexmid 7147 exmidfodomrlemr 7200 exmidfodomrlemrALT 7201 acfun 7205 ccfunen 7262 cc1 7263 cc2lem 7264 cc2 7265 cc3 7266 recexnq 7388 prarloc 7501 genpdflem 7505 genpassl 7522 genpassu 7523 ltexprlemell 7596 ltexprlemelu 7597 ltexprlemm 7598 recexprlemell 7620 recexprlemelu 7621 cnm 7830 sup3exmid 8913 seq3f1olemp 10501 zfz1isolem1 10819 zfz1iso 10820 sumeq1 11362 sumeq2 11366 summodc 11390 fsum3 11394 fsum2dlemstep 11441 ntrivcvgap0 11556 prodeq1f 11559 prodeq2w 11563 prodeq2 11564 prodmodc 11585 zproddc 11586 fprodseq 11590 fprodntrivap 11591 fprod2dlemstep 11629 ctinf 12430 ctiunct 12440 ssomct 12445 ptex 12712 bdsep2 14608 bdzfauscl 14612 strcoll2 14705 sscoll2 14710 subctctexmid 14720 nninfall 14728 |
Copyright terms: Public domain | W3C validator |