| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbidv | GIF version | ||
| Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| exbidv | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1540 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | exbidh 1628 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11ev 1842 2exbidv 1882 3exbidv 1883 eubidh 2051 eubid 2052 eleq1w 2257 eleq2w 2258 eleq1 2259 eleq2 2260 rexbidv2 2500 ceqsex2 2804 alexeq 2890 ceqex 2891 sbc5 3013 sbcex2 3043 sbcexg 3044 sbcabel 3071 eluni 3842 csbunig 3847 intab 3903 cbvopab1 4106 cbvopab1s 4108 axsep2 4152 zfauscl 4153 bnd2 4206 mss 4259 opeqex 4282 euotd 4287 snnex 4483 uniuni 4486 regexmid 4571 reg2exmid 4572 onintexmid 4609 reg3exmid 4616 nnregexmid 4657 opeliunxp 4718 csbxpg 4744 brcog 4833 elrn2g 4856 dfdmf 4859 csbdmg 4860 eldmg 4861 dfrnf 4907 elrn2 4908 elrnmpt1 4917 brcodir 5057 xp11m 5108 xpimasn 5118 csbrng 5131 elxp4 5157 elxp5 5158 dfco2a 5170 cores 5173 funimaexglem 5341 brprcneu 5551 ssimaexg 5623 dmfco 5629 fndmdif 5667 fmptco 5728 fliftf 5846 acexmidlem2 5919 acexmidlemv 5920 cbvoprab1 5994 cbvoprab2 5995 oprssdmm 6229 dmtpos 6314 tfrlemi1 6390 tfr1onlemaccex 6406 tfrcllemaccex 6419 ecdmn0m 6636 ereldm 6637 elqsn0m 6662 mapsn 6749 bren 6806 brdomg 6807 domeng 6811 ac6sfi 6959 ordiso 7102 ctssdclemr 7178 enumct 7181 ctssexmid 7216 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 acfun 7274 ccfunen 7331 cc1 7332 cc2lem 7333 cc2 7334 cc3 7335 recexnq 7457 prarloc 7570 genpdflem 7574 genpassl 7591 genpassu 7592 ltexprlemell 7665 ltexprlemelu 7666 ltexprlemm 7667 recexprlemell 7689 recexprlemelu 7690 cnm 7899 sup3exmid 8984 seq3f1olemp 10607 zfz1isolem1 10932 zfz1iso 10933 sumeq1 11520 sumeq2 11524 summodc 11548 fsum3 11552 fsum2dlemstep 11599 ntrivcvgap0 11714 prodeq1f 11717 prodeq2w 11721 prodeq2 11722 prodmodc 11743 zproddc 11744 fprodseq 11748 fprodntrivap 11749 fprod2dlemstep 11787 ctinf 12647 ctiunct 12657 ssomct 12662 ptex 12935 igsumvalx 13032 gsumpropd 13035 gsumpropd2 13036 gsumress 13038 gsum0g 13039 islssm 13913 islssmg 13914 znleval 14209 bdsep2 15532 bdzfauscl 15536 strcoll2 15629 sscoll2 15634 subctctexmid 15645 nninfall 15653 |
| Copyright terms: Public domain | W3C validator |