![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exbidv | GIF version |
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
exbidv | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1526 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | exbidh 1614 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ax11ev 1828 2exbidv 1868 3exbidv 1869 eubidh 2032 eubid 2033 eleq1w 2238 eleq2w 2239 eleq1 2240 eleq2 2241 rexbidv2 2480 ceqsex2 2778 alexeq 2864 ceqex 2865 sbc5 2987 sbcex2 3017 sbcexg 3018 sbcabel 3045 eluni 3813 csbunig 3818 intab 3874 cbvopab1 4077 cbvopab1s 4079 axsep2 4123 zfauscl 4124 bnd2 4174 mss 4227 opeqex 4250 euotd 4255 snnex 4449 uniuni 4452 regexmid 4535 reg2exmid 4536 onintexmid 4573 reg3exmid 4580 nnregexmid 4621 opeliunxp 4682 csbxpg 4708 brcog 4795 elrn2g 4818 dfdmf 4821 csbdmg 4822 eldmg 4823 dfrnf 4869 elrn2 4870 elrnmpt1 4879 brcodir 5017 xp11m 5068 xpimasn 5078 csbrng 5091 elxp4 5117 elxp5 5118 dfco2a 5130 cores 5133 funimaexglem 5300 brprcneu 5509 ssimaexg 5579 dmfco 5585 fndmdif 5622 fmptco 5683 fliftf 5800 acexmidlem2 5872 acexmidlemv 5873 cbvoprab1 5947 cbvoprab2 5948 oprssdmm 6172 dmtpos 6257 tfrlemi1 6333 tfr1onlemaccex 6349 tfrcllemaccex 6362 ecdmn0m 6577 ereldm 6578 elqsn0m 6603 mapsn 6690 bren 6747 brdomg 6748 domeng 6752 ac6sfi 6898 ordiso 7035 ctssdclemr 7111 enumct 7114 ctssexmid 7148 exmidfodomrlemr 7201 exmidfodomrlemrALT 7202 acfun 7206 ccfunen 7263 cc1 7264 cc2lem 7265 cc2 7266 cc3 7267 recexnq 7389 prarloc 7502 genpdflem 7506 genpassl 7523 genpassu 7524 ltexprlemell 7597 ltexprlemelu 7598 ltexprlemm 7599 recexprlemell 7621 recexprlemelu 7622 cnm 7831 sup3exmid 8914 seq3f1olemp 10502 zfz1isolem1 10820 zfz1iso 10821 sumeq1 11363 sumeq2 11367 summodc 11391 fsum3 11395 fsum2dlemstep 11442 ntrivcvgap0 11557 prodeq1f 11560 prodeq2w 11564 prodeq2 11565 prodmodc 11586 zproddc 11587 fprodseq 11591 fprodntrivap 11592 fprod2dlemstep 11630 ctinf 12431 ctiunct 12441 ssomct 12446 ptex 12713 bdsep2 14641 bdzfauscl 14645 strcoll2 14738 sscoll2 14743 subctctexmid 14753 nninfall 14761 |
Copyright terms: Public domain | W3C validator |