| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbidv | GIF version | ||
| Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| exbidv | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1548 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | exbidh 1636 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11ev 1850 2exbidv 1890 3exbidv 1891 eubidh 2059 eubid 2060 eleq1w 2265 eleq2w 2266 eleq1 2267 eleq2 2268 rexbidv2 2508 ceqsex2 2812 alexeq 2898 ceqex 2899 sbc5 3021 sbcex2 3051 sbcexg 3052 sbcabel 3079 eluni 3852 csbunig 3857 intab 3913 cbvopab1 4116 cbvopab1s 4118 axsep2 4162 zfauscl 4163 bnd2 4216 mss 4269 opeqex 4293 euotd 4298 snnex 4494 uniuni 4497 regexmid 4582 reg2exmid 4583 onintexmid 4620 reg3exmid 4627 nnregexmid 4668 opeliunxp 4729 csbxpg 4755 brcog 4844 elrn2g 4867 dfdmf 4870 csbdmg 4871 eldmg 4872 dfrnf 4918 elrn2 4919 elrnmpt1 4928 brcodir 5069 xp11m 5120 xpimasn 5130 csbrng 5143 elxp4 5169 elxp5 5170 dfco2a 5182 cores 5185 funimaexglem 5356 brprcneu 5568 ssimaexg 5640 dmfco 5646 fndmdif 5684 fmptco 5745 fliftf 5867 acexmidlem2 5940 acexmidlemv 5941 cbvoprab1 6016 cbvoprab2 6017 oprssdmm 6256 dmtpos 6341 tfrlemi1 6417 tfr1onlemaccex 6433 tfrcllemaccex 6446 ecdmn0m 6663 ereldm 6664 elqsn0m 6689 mapsn 6776 breng 6833 bren 6834 brdom2g 6835 brdomg 6836 domeng 6840 en2 6911 ac6sfi 6994 ordiso 7137 ctssdclemr 7213 enumct 7216 ctssexmid 7251 exmidfodomrlemr 7309 exmidfodomrlemrALT 7310 acneq 7313 finacn 7315 acfun 7318 ccfunen 7375 cc1 7376 cc2lem 7377 cc2 7378 cc3 7379 acnccim 7383 recexnq 7502 prarloc 7615 genpdflem 7619 genpassl 7636 genpassu 7637 ltexprlemell 7710 ltexprlemelu 7711 ltexprlemm 7712 recexprlemell 7734 recexprlemelu 7735 cnm 7944 sup3exmid 9029 seq3f1olemp 10658 zfz1isolem1 10983 zfz1iso 10984 sumeq1 11637 sumeq2 11641 summodc 11665 fsum3 11669 fsum2dlemstep 11716 ntrivcvgap0 11831 prodeq1f 11834 prodeq2w 11838 prodeq2 11839 prodmodc 11860 zproddc 11861 fprodseq 11865 fprodntrivap 11866 fprod2dlemstep 11904 ctinf 12772 ctiunct 12782 ssomct 12787 ptex 13067 igsumvalx 13192 gsumpropd 13195 gsumpropd2 13196 gsumress 13198 gsum0g 13199 islssm 14090 islssmg 14091 znleval 14386 bdsep2 15784 bdzfauscl 15788 strcoll2 15881 sscoll2 15886 subctctexmid 15899 domomsubct 15900 nninfall 15908 |
| Copyright terms: Public domain | W3C validator |