| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbidv | GIF version | ||
| Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| exbidv | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1550 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | exbidh 1638 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11ev 1852 2exbidv 1892 3exbidv 1893 eubidh 2061 eubid 2062 eleq1w 2267 eleq2w 2268 eleq1 2269 eleq2 2270 rexbidv2 2510 ceqsex2 2815 alexeq 2903 ceqex 2904 sbc5 3026 sbcex2 3056 sbcexg 3057 sbcabel 3084 eluni 3862 csbunig 3867 intab 3923 cbvopab1 4128 cbvopab1s 4130 axsep2 4174 zfauscl 4175 bnd2 4228 mss 4283 opeqex 4307 euotd 4312 snnex 4508 uniuni 4511 regexmid 4596 reg2exmid 4597 onintexmid 4634 reg3exmid 4641 nnregexmid 4682 opeliunxp 4743 csbxpg 4769 brcog 4858 elrn2g 4881 dfdmf 4885 csbdmg 4886 eldmg 4887 dfrnf 4933 elrn2 4934 elrnmpt1 4943 brcodir 5084 xp11m 5135 xpimasn 5145 csbrng 5158 elxp4 5184 elxp5 5185 dfco2a 5197 cores 5200 funimaexglem 5371 brprcneu 5587 ssimaexg 5659 dmfco 5665 fndmdif 5703 fmptco 5764 fliftf 5886 acexmidlem2 5959 acexmidlemv 5960 cbvoprab1 6035 cbvoprab2 6036 oprssdmm 6275 dmtpos 6360 tfrlemi1 6436 tfr1onlemaccex 6452 tfrcllemaccex 6465 ecdmn0m 6682 ereldm 6683 elqsn0m 6708 mapsn 6795 breng 6852 bren 6853 brdom2g 6854 brdomg 6855 domeng 6859 en2 6931 ac6sfi 7016 ordiso 7159 ctssdclemr 7235 enumct 7238 ctssexmid 7273 exmidfodomrlemr 7336 exmidfodomrlemrALT 7337 acneq 7340 finacn 7342 acfun 7345 ccfunen 7406 cc1 7407 cc2lem 7408 cc2 7409 cc3 7410 acnccim 7414 recexnq 7533 prarloc 7646 genpdflem 7650 genpassl 7667 genpassu 7668 ltexprlemell 7741 ltexprlemelu 7742 ltexprlemm 7743 recexprlemell 7765 recexprlemelu 7766 cnm 7975 sup3exmid 9060 seq3f1olemp 10692 zfz1isolem1 11017 zfz1iso 11018 sumeq1 11751 sumeq2 11755 summodc 11779 fsum3 11783 fsum2dlemstep 11830 ntrivcvgap0 11945 prodeq1f 11948 prodeq2w 11952 prodeq2 11953 prodmodc 11974 zproddc 11975 fprodseq 11979 fprodntrivap 11980 fprod2dlemstep 12018 ctinf 12886 ctiunct 12896 ssomct 12901 ptex 13181 igsumvalx 13306 gsumpropd 13309 gsumpropd2 13310 gsumress 13312 gsum0g 13313 islssm 14204 islssmg 14205 znleval 14500 uhgrm 15759 lpvtx 15760 incistruhgr 15771 upgrex 15784 uhgredgm 15812 bdsep2 15991 bdzfauscl 15995 strcoll2 16088 sscoll2 16093 subctctexmid 16109 domomsubct 16110 nninfall 16118 |
| Copyright terms: Public domain | W3C validator |