| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbidv | GIF version | ||
| Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| exbidv | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1540 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | exbidh 1628 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11ev 1842 2exbidv 1882 3exbidv 1883 eubidh 2051 eubid 2052 eleq1w 2257 eleq2w 2258 eleq1 2259 eleq2 2260 rexbidv2 2500 ceqsex2 2804 alexeq 2890 ceqex 2891 sbc5 3013 sbcex2 3043 sbcexg 3044 sbcabel 3071 eluni 3843 csbunig 3848 intab 3904 cbvopab1 4107 cbvopab1s 4109 axsep2 4153 zfauscl 4154 bnd2 4207 mss 4260 opeqex 4283 euotd 4288 snnex 4484 uniuni 4487 regexmid 4572 reg2exmid 4573 onintexmid 4610 reg3exmid 4617 nnregexmid 4658 opeliunxp 4719 csbxpg 4745 brcog 4834 elrn2g 4857 dfdmf 4860 csbdmg 4861 eldmg 4862 dfrnf 4908 elrn2 4909 elrnmpt1 4918 brcodir 5058 xp11m 5109 xpimasn 5119 csbrng 5132 elxp4 5158 elxp5 5159 dfco2a 5171 cores 5174 funimaexglem 5342 brprcneu 5554 ssimaexg 5626 dmfco 5632 fndmdif 5670 fmptco 5731 fliftf 5849 acexmidlem2 5922 acexmidlemv 5923 cbvoprab1 5998 cbvoprab2 5999 oprssdmm 6238 dmtpos 6323 tfrlemi1 6399 tfr1onlemaccex 6415 tfrcllemaccex 6428 ecdmn0m 6645 ereldm 6646 elqsn0m 6671 mapsn 6758 bren 6815 brdomg 6816 domeng 6820 ac6sfi 6968 ordiso 7111 ctssdclemr 7187 enumct 7190 ctssexmid 7225 exmidfodomrlemr 7283 exmidfodomrlemrALT 7284 acneq 7287 finacn 7289 acfun 7292 ccfunen 7349 cc1 7350 cc2lem 7351 cc2 7352 cc3 7353 acnccim 7357 recexnq 7476 prarloc 7589 genpdflem 7593 genpassl 7610 genpassu 7611 ltexprlemell 7684 ltexprlemelu 7685 ltexprlemm 7686 recexprlemell 7708 recexprlemelu 7709 cnm 7918 sup3exmid 9003 seq3f1olemp 10626 zfz1isolem1 10951 zfz1iso 10952 sumeq1 11539 sumeq2 11543 summodc 11567 fsum3 11571 fsum2dlemstep 11618 ntrivcvgap0 11733 prodeq1f 11736 prodeq2w 11740 prodeq2 11741 prodmodc 11762 zproddc 11763 fprodseq 11767 fprodntrivap 11768 fprod2dlemstep 11806 ctinf 12674 ctiunct 12684 ssomct 12689 ptex 12968 igsumvalx 13093 gsumpropd 13096 gsumpropd2 13097 gsumress 13099 gsum0g 13100 islssm 13991 islssmg 13992 znleval 14287 bdsep2 15640 bdzfauscl 15644 strcoll2 15737 sscoll2 15742 subctctexmid 15755 domomsubct 15756 nninfall 15764 |
| Copyright terms: Public domain | W3C validator |