| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbidv | GIF version | ||
| Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| exbidv | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | exbidh 1660 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11ev 1874 2exbidv 1914 3exbidv 1915 eubidh 2083 eubid 2084 eleq1w 2290 eleq2w 2291 eleq1 2292 eleq2 2293 rexbidv2 2533 ceqsex2 2841 alexeq 2929 ceqex 2930 sbc5 3052 sbcex2 3082 sbcexg 3083 sbcabel 3111 eluni 3890 csbunig 3895 intab 3951 cbvopab1 4156 cbvopab1s 4158 axsep2 4202 zfauscl 4203 bnd2 4256 mss 4311 opeqex 4335 euotd 4340 snnex 4538 uniuni 4541 regexmid 4626 reg2exmid 4627 onintexmid 4664 reg3exmid 4671 nnregexmid 4712 opeliunxp 4773 csbxpg 4799 brcog 4888 elrn2g 4911 dfdmf 4915 csbdmg 4916 eldmg 4917 dfrnf 4964 elrn2 4965 elrnmpt1 4974 brcodir 5115 xp11m 5166 xpimasn 5176 csbrng 5189 elxp4 5215 elxp5 5216 dfco2a 5228 cores 5231 funimaexglem 5403 brprcneu 5619 ssimaexg 5695 dmfco 5701 fndmdif 5739 fmptco 5800 fliftf 5922 acexmidlem2 5997 acexmidlemv 5998 cbvoprab1 6075 cbvoprab2 6076 oprssdmm 6315 dmtpos 6400 tfrlemi1 6476 tfr1onlemaccex 6492 tfrcllemaccex 6505 ecdmn0m 6722 ereldm 6723 elqsn0m 6748 mapsn 6835 breng 6892 bren 6893 brdom2g 6894 brdomg 6895 domeng 6899 en2 6971 ac6sfi 7056 ordiso 7199 ctssdclemr 7275 enumct 7278 ctssexmid 7313 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 acneq 7380 finacn 7382 acfun 7385 ccfunen 7446 cc1 7447 cc2lem 7448 cc2 7449 cc3 7450 acnccim 7454 recexnq 7573 prarloc 7686 genpdflem 7690 genpassl 7707 genpassu 7708 ltexprlemell 7781 ltexprlemelu 7782 ltexprlemm 7783 recexprlemell 7805 recexprlemelu 7806 cnm 8015 sup3exmid 9100 seq3f1olemp 10732 zfz1isolem1 11057 zfz1iso 11058 sumeq1 11861 sumeq2 11865 summodc 11889 fsum3 11893 fsum2dlemstep 11940 ntrivcvgap0 12055 prodeq1f 12058 prodeq2w 12062 prodeq2 12063 prodmodc 12084 zproddc 12085 fprodseq 12089 fprodntrivap 12090 fprod2dlemstep 12128 ctinf 12996 ctiunct 13006 ssomct 13011 ptex 13292 igsumvalx 13417 gsumpropd 13420 gsumpropd2 13421 gsumress 13423 gsum0g 13424 islssm 14315 islssmg 14316 znleval 14611 uhgrm 15872 lpvtx 15873 incistruhgr 15884 upgrex 15897 uhgredgm 15928 wlkm 16038 bdsep2 16207 bdzfauscl 16211 strcoll2 16304 sscoll2 16309 subctctexmid 16325 domomsubct 16326 nninfall 16334 |
| Copyright terms: Public domain | W3C validator |