Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exbidv | GIF version |
Description: Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
exbidv | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1514 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | albidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | exbidh 1602 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ax11ev 1816 2exbidv 1856 3exbidv 1857 eubidh 2020 eubid 2021 eleq1w 2226 eleq2w 2227 eleq1 2228 eleq2 2229 rexbidv2 2468 ceqsex2 2765 alexeq 2851 ceqex 2852 sbc5 2973 sbcex2 3003 sbcexg 3004 sbcabel 3031 eluni 3791 csbunig 3796 intab 3852 cbvopab1 4054 cbvopab1s 4056 axsep2 4100 zfauscl 4101 bnd2 4151 mss 4203 opeqex 4226 euotd 4231 snnex 4425 uniuni 4428 regexmid 4511 reg2exmid 4512 onintexmid 4549 reg3exmid 4556 nnregexmid 4597 opeliunxp 4658 csbxpg 4684 brcog 4770 elrn2g 4793 dfdmf 4796 csbdmg 4797 eldmg 4798 dfrnf 4844 elrn2 4845 elrnmpt1 4854 brcodir 4990 xp11m 5041 xpimasn 5051 csbrng 5064 elxp4 5090 elxp5 5091 dfco2a 5103 cores 5106 funimaexglem 5270 brprcneu 5478 ssimaexg 5547 dmfco 5553 fndmdif 5589 fmptco 5650 fliftf 5766 acexmidlem2 5838 acexmidlemv 5839 cbvoprab1 5910 cbvoprab2 5911 oprssdmm 6136 dmtpos 6220 tfrlemi1 6296 tfr1onlemaccex 6312 tfrcllemaccex 6325 ecdmn0m 6539 ereldm 6540 elqsn0m 6565 mapsn 6652 bren 6709 brdomg 6710 domeng 6714 ac6sfi 6860 ordiso 6997 ctssdclemr 7073 enumct 7076 ctssexmid 7110 exmidfodomrlemr 7154 exmidfodomrlemrALT 7155 acfun 7159 ccfunen 7201 cc1 7202 cc2lem 7203 cc2 7204 cc3 7205 recexnq 7327 prarloc 7440 genpdflem 7444 genpassl 7461 genpassu 7462 ltexprlemell 7535 ltexprlemelu 7536 ltexprlemm 7537 recexprlemell 7559 recexprlemelu 7560 cnm 7769 sup3exmid 8848 seq3f1olemp 10433 zfz1isolem1 10749 zfz1iso 10750 sumeq1 11292 sumeq2 11296 summodc 11320 fsum3 11324 fsum2dlemstep 11371 ntrivcvgap0 11486 prodeq1f 11489 prodeq2w 11493 prodeq2 11494 prodmodc 11515 zproddc 11516 fprodseq 11520 fprodntrivap 11521 fprod2dlemstep 11559 ctinf 12359 ctiunct 12369 ssomct 12374 bdsep2 13728 bdzfauscl 13732 strcoll2 13825 sscoll2 13830 subctctexmid 13841 nninfall 13849 |
Copyright terms: Public domain | W3C validator |