ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulexp GIF version

Theorem mulexp 10670
Description: Nonnegative integer exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
mulexp ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))

Proof of Theorem mulexp
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5930 . . . . . 6 (𝑗 = 0 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑0))
2 oveq2 5930 . . . . . . 7 (𝑗 = 0 → (𝐴𝑗) = (𝐴↑0))
3 oveq2 5930 . . . . . . 7 (𝑗 = 0 → (𝐵𝑗) = (𝐵↑0))
42, 3oveq12d 5940 . . . . . 6 (𝑗 = 0 → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴↑0) · (𝐵↑0)))
51, 4eqeq12d 2211 . . . . 5 (𝑗 = 0 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0))))
65imbi2d 230 . . . 4 (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0)))))
7 oveq2 5930 . . . . . 6 (𝑗 = 𝑘 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑𝑘))
8 oveq2 5930 . . . . . . 7 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
9 oveq2 5930 . . . . . . 7 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
108, 9oveq12d 5940 . . . . . 6 (𝑗 = 𝑘 → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴𝑘) · (𝐵𝑘)))
117, 10eqeq12d 2211 . . . . 5 (𝑗 = 𝑘 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))))
1211imbi2d 230 . . . 4 (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)))))
13 oveq2 5930 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑(𝑘 + 1)))
14 oveq2 5930 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
15 oveq2 5930 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝐵𝑗) = (𝐵↑(𝑘 + 1)))
1614, 15oveq12d 5940 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
1713, 16eqeq12d 2211 . . . . 5 (𝑗 = (𝑘 + 1) → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1)))))
1817imbi2d 230 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
19 oveq2 5930 . . . . . 6 (𝑗 = 𝑁 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑𝑁))
20 oveq2 5930 . . . . . . 7 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
21 oveq2 5930 . . . . . . 7 (𝑗 = 𝑁 → (𝐵𝑗) = (𝐵𝑁))
2220, 21oveq12d 5940 . . . . . 6 (𝑗 = 𝑁 → ((𝐴𝑗) · (𝐵𝑗)) = ((𝐴𝑁) · (𝐵𝑁)))
2319, 22eqeq12d 2211 . . . . 5 (𝑗 = 𝑁 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗)) ↔ ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁))))
2423imbi2d 230 . . . 4 (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴𝑗) · (𝐵𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))))
25 mulcl 8006 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
26 exp0 10635 . . . . . 6 ((𝐴 · 𝐵) ∈ ℂ → ((𝐴 · 𝐵)↑0) = 1)
2725, 26syl 14 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = 1)
28 exp0 10635 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
29 exp0 10635 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
3028, 29oveqan12d 5941 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = (1 · 1))
31 1t1e1 9143 . . . . . 6 (1 · 1) = 1
3230, 31eqtrdi 2245 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = 1)
3327, 32eqtr4d 2232 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0)))
34 expp1 10638 . . . . . . . . . 10 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)))
3525, 34sylan 283 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)))
3635adantr 276 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)))
37 oveq1 5929 . . . . . . . . 9 (((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)) → (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)) = (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)))
38 expcl 10649 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
39 expcl 10649 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
4038, 39anim12i 338 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) ∧ (𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0)) → ((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ))
4140anandirs 593 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ))
42 simpl 109 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
43 mul4 8158 . . . . . . . . . . 11 ((((𝐴𝑘) ∈ ℂ ∧ (𝐵𝑘) ∈ ℂ) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)) = (((𝐴𝑘) · 𝐴) · ((𝐵𝑘) · 𝐵)))
4441, 42, 43syl2anc 411 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)) = (((𝐴𝑘) · 𝐴) · ((𝐵𝑘) · 𝐵)))
45 expp1 10638 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
4645adantlr 477 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
47 expp1 10638 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
4847adantll 476 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
4946, 48oveq12d 5940 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))) = (((𝐴𝑘) · 𝐴) · ((𝐵𝑘) · 𝐵)))
5044, 49eqtr4d 2232 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((𝐴𝑘) · (𝐵𝑘)) · (𝐴 · 𝐵)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
5137, 50sylan9eqr 2251 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
5236, 51eqtrd 2229 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))
5352exp31 364 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑘 ∈ ℕ0 → (((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
5453com12 30 . . . . 5 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘)) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
5554a2d 26 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑘) = ((𝐴𝑘) · (𝐵𝑘))) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))))
566, 12, 18, 24, 33, 55nn0ind 9440 . . 3 (𝑁 ∈ ℕ0 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁))))
5756expdcom 1453 . 2 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → (𝑁 ∈ ℕ0 → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))))
58573imp 1195 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴𝑁) · (𝐵𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884  0cn0 9249  cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  mulexpzap  10671  expdivap  10682  expubnd  10688  sqmul  10693  mulexpd  10780  efi4p  11882
  Copyright terms: Public domain W3C validator