Step | Hyp | Ref
| Expression |
1 | | oveq2 5850 |
. . . . . 6
⊢ (𝑗 = 0 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑0)) |
2 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑗 = 0 → (𝐴↑𝑗) = (𝐴↑0)) |
3 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑗 = 0 → (𝐵↑𝑗) = (𝐵↑0)) |
4 | 2, 3 | oveq12d 5860 |
. . . . . 6
⊢ (𝑗 = 0 → ((𝐴↑𝑗) · (𝐵↑𝑗)) = ((𝐴↑0) · (𝐵↑0))) |
5 | 1, 4 | eqeq12d 2180 |
. . . . 5
⊢ (𝑗 = 0 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴↑𝑗) · (𝐵↑𝑗)) ↔ ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0)))) |
6 | 5 | imbi2d 229 |
. . . 4
⊢ (𝑗 = 0 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴↑𝑗) · (𝐵↑𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0))))) |
7 | | oveq2 5850 |
. . . . . 6
⊢ (𝑗 = 𝑘 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑𝑘)) |
8 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) |
9 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝐵↑𝑗) = (𝐵↑𝑘)) |
10 | 8, 9 | oveq12d 5860 |
. . . . . 6
⊢ (𝑗 = 𝑘 → ((𝐴↑𝑗) · (𝐵↑𝑗)) = ((𝐴↑𝑘) · (𝐵↑𝑘))) |
11 | 7, 10 | eqeq12d 2180 |
. . . . 5
⊢ (𝑗 = 𝑘 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴↑𝑗) · (𝐵↑𝑗)) ↔ ((𝐴 · 𝐵)↑𝑘) = ((𝐴↑𝑘) · (𝐵↑𝑘)))) |
12 | 11 | imbi2d 229 |
. . . 4
⊢ (𝑗 = 𝑘 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴↑𝑗) · (𝐵↑𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑘) = ((𝐴↑𝑘) · (𝐵↑𝑘))))) |
13 | | oveq2 5850 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑(𝑘 + 1))) |
14 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) |
15 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑗 = (𝑘 + 1) → (𝐵↑𝑗) = (𝐵↑(𝑘 + 1))) |
16 | 14, 15 | oveq12d 5860 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → ((𝐴↑𝑗) · (𝐵↑𝑗)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1)))) |
17 | 13, 16 | eqeq12d 2180 |
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → (((𝐴 · 𝐵)↑𝑗) = ((𝐴↑𝑗) · (𝐵↑𝑗)) ↔ ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))))) |
18 | 17 | imbi2d 229 |
. . . 4
⊢ (𝑗 = (𝑘 + 1) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴↑𝑗) · (𝐵↑𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1)))))) |
19 | | oveq2 5850 |
. . . . . 6
⊢ (𝑗 = 𝑁 → ((𝐴 · 𝐵)↑𝑗) = ((𝐴 · 𝐵)↑𝑁)) |
20 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) |
21 | | oveq2 5850 |
. . . . . . 7
⊢ (𝑗 = 𝑁 → (𝐵↑𝑗) = (𝐵↑𝑁)) |
22 | 20, 21 | oveq12d 5860 |
. . . . . 6
⊢ (𝑗 = 𝑁 → ((𝐴↑𝑗) · (𝐵↑𝑗)) = ((𝐴↑𝑁) · (𝐵↑𝑁))) |
23 | 19, 22 | eqeq12d 2180 |
. . . . 5
⊢ (𝑗 = 𝑁 → (((𝐴 · 𝐵)↑𝑗) = ((𝐴↑𝑗) · (𝐵↑𝑗)) ↔ ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁)))) |
24 | 23 | imbi2d 229 |
. . . 4
⊢ (𝑗 = 𝑁 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑗) = ((𝐴↑𝑗) · (𝐵↑𝑗))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))))) |
25 | | mulcl 7880 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
26 | | exp0 10459 |
. . . . . 6
⊢ ((𝐴 · 𝐵) ∈ ℂ → ((𝐴 · 𝐵)↑0) = 1) |
27 | 25, 26 | syl 14 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = 1) |
28 | | exp0 10459 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) |
29 | | exp0 10459 |
. . . . . . 7
⊢ (𝐵 ∈ ℂ → (𝐵↑0) = 1) |
30 | 28, 29 | oveqan12d 5861 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = (1 ·
1)) |
31 | | 1t1e1 9009 |
. . . . . 6
⊢ (1
· 1) = 1 |
32 | 30, 31 | eqtrdi 2215 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑0) · (𝐵↑0)) = 1) |
33 | 27, 32 | eqtr4d 2201 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑0) = ((𝐴↑0) · (𝐵↑0))) |
34 | | expp1 10462 |
. . . . . . . . . 10
⊢ (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵))) |
35 | 25, 34 | sylan 281 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0)
→ ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵))) |
36 | 35 | adantr 274 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0)
∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴↑𝑘) · (𝐵↑𝑘))) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵))) |
37 | | oveq1 5849 |
. . . . . . . . 9
⊢ (((𝐴 · 𝐵)↑𝑘) = ((𝐴↑𝑘) · (𝐵↑𝑘)) → (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)) = (((𝐴↑𝑘) · (𝐵↑𝑘)) · (𝐴 · 𝐵))) |
38 | | expcl 10473 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) |
39 | | expcl 10473 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐵↑𝑘) ∈
ℂ) |
40 | 38, 39 | anim12i 336 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
∧ (𝐵 ∈ ℂ
∧ 𝑘 ∈
ℕ0)) → ((𝐴↑𝑘) ∈ ℂ ∧ (𝐵↑𝑘) ∈ ℂ)) |
41 | 40 | anandirs 583 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑𝑘) ∈ ℂ ∧ (𝐵↑𝑘) ∈ ℂ)) |
42 | | simpl 108 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0)
→ (𝐴 ∈ ℂ
∧ 𝐵 ∈
ℂ)) |
43 | | mul4 8030 |
. . . . . . . . . . 11
⊢ ((((𝐴↑𝑘) ∈ ℂ ∧ (𝐵↑𝑘) ∈ ℂ) ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → (((𝐴↑𝑘) · (𝐵↑𝑘)) · (𝐴 · 𝐵)) = (((𝐴↑𝑘) · 𝐴) · ((𝐵↑𝑘) · 𝐵))) |
44 | 41, 42, 43 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0)
→ (((𝐴↑𝑘) · (𝐵↑𝑘)) · (𝐴 · 𝐵)) = (((𝐴↑𝑘) · 𝐴) · ((𝐵↑𝑘) · 𝐵))) |
45 | | expp1 10462 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
46 | 45 | adantlr 469 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
47 | | expp1 10462 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐵↑(𝑘 + 1)) = ((𝐵↑𝑘) · 𝐵)) |
48 | 47 | adantll 468 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0)
→ (𝐵↑(𝑘 + 1)) = ((𝐵↑𝑘) · 𝐵)) |
49 | 46, 48 | oveq12d 5860 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1))) = (((𝐴↑𝑘) · 𝐴) · ((𝐵↑𝑘) · 𝐵))) |
50 | 44, 49 | eqtr4d 2201 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0)
→ (((𝐴↑𝑘) · (𝐵↑𝑘)) · (𝐴 · 𝐵)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1)))) |
51 | 37, 50 | sylan9eqr 2221 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0)
∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴↑𝑘) · (𝐵↑𝑘))) → (((𝐴 · 𝐵)↑𝑘) · (𝐴 · 𝐵)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1)))) |
52 | 36, 51 | eqtrd 2198 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑘 ∈ ℕ0)
∧ ((𝐴 · 𝐵)↑𝑘) = ((𝐴↑𝑘) · (𝐵↑𝑘))) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1)))) |
53 | 52 | exp31 362 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑘 ∈ ℕ0
→ (((𝐴 · 𝐵)↑𝑘) = ((𝐴↑𝑘) · (𝐵↑𝑘)) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1)))))) |
54 | 53 | com12 30 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ ((𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ)
→ (((𝐴 · 𝐵)↑𝑘) = ((𝐴↑𝑘) · (𝐵↑𝑘)) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1)))))) |
55 | 54 | a2d 26 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (((𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ)
→ ((𝐴 · 𝐵)↑𝑘) = ((𝐴↑𝑘) · (𝐵↑𝑘))) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵)↑(𝑘 + 1)) = ((𝐴↑(𝑘 + 1)) · (𝐵↑(𝑘 + 1)))))) |
56 | 6, 12, 18, 24, 33, 55 | nn0ind 9305 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝐴 ∈ ℂ
∧ 𝐵 ∈ ℂ)
→ ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁)))) |
57 | 56 | expdcom 1430 |
. 2
⊢ (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → (𝑁 ∈ ℕ0
→ ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))))) |
58 | 57 | 3imp 1183 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑁 ∈ ℕ0)
→ ((𝐴 · 𝐵)↑𝑁) = ((𝐴↑𝑁) · (𝐵↑𝑁))) |